Codeforces 300 C Beautiful Numbers (Locas)

本文详细阐述了如何通过深搜算法与组合数学原理解决特定数字和问题,包括求解符合条件的数字数量及使用洛卡斯定理优化计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路:首先注意到对于长度为N的数字,他各个位数相加最多不会超过b*n,那么就可以枚举小于等于b*n中由a和b组成的good数gnum,设a*x+b*y=gnum,x和y为所求n位数中a的个数和b的个数,并且x+y=n这样,就可以解得x=(m-b*n)/(a-b).只要有正整数解,就说明存在n位数good数字使得他的各个位数之和等于gnum,也就是说由x个a核y个b组成的数字都是excellent数,于是每次ans=(ans+C(n,x)%mod)%mod。gnum可以用深搜枚举,到这里都还会,之后就是和高数轮的同学讨论了,因为C(n,m)%mod涉及到Locas。

对于Locas求的是C(n,m)%p,p是素数,且n,m比较大的时候。

具体可以看这篇:http://blog.csdn.net/acdreamers/article/details/8037918

这里还有一个优化 a/b(mod p)=a%p/(b%p)=a*b^(p-2)(mod p),这样n!/((n-m)!*(m!))%mod=(n!)%mod*(((m-n)!%mod*(m!)%mod)^(mod-2))。在上面的博客中也有写

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <ctime>
using namespace std;
#define LL long long
const int maxn=1000001;
const int mod=1000000007;
LL a,b,n,x,y;
LL sum=0;
LL p[maxn];
LL quickpow(LL a,LL b)
{
    LL res=1;
    while(b>0)
    {
        if(b&1)
            res=(res*a)%mod;
        b>>=1;
        a=(a*a)%mod;
    }
    return res;
}
LL C(LL n,LL m)
{
    if(m>n) return 0;
    return (p[n]*quickpow((p[n-m]*p[m])%mod,mod-2))%mod;
}
LL Locas(LL n,LL m)
{
    if(m==0) return 1;
    return (C(n%mod,m%mod)*Locas(n/mod,m/mod))%mod;
}
void dfs(int num)
{
    if(num>b*n) return;
    if(num)
    {
        x=num-b*n;
        if(x%(a-b)==0)
        {
            x/=(a-b);
            sum=(sum+Locas(n,x))%mod;
        }
    }
    dfs(num*10+a);
    dfs(num*10+b);
}
int main()
{
    cin>>a>>b>>n;
    p[0]=p[1]=1;
    for(LL i=2; i<=n; i++)
        p[i]=(p[i-1]*i)%mod;
    sum=0;
    dfs(0);
    cout<<sum<<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值