动手学深度学习笔记(二)

本文深入探讨了卷积神经网络的基础概念,包括二维互相关运算、卷积层、特征图、感受野、填充、步幅、多输入和输出通道、1X1卷积层、池化层等关键组成部分。此外,还介绍了卷积神经网络如何识别图像特征并减少位置敏感性,以及VGG网络的设计理念。
摘要由CSDN通过智能技术生成

卷积神经网络

  • 二维互相关运算:用一个二维数组和卷积核运算,即每个对应元素相乘再求和
    在这里插入图片描述
  • 二维卷积层:输入和卷积核做互相关运算,再加一个标准差作为输出,卷积核和标准差就是我们要迭代的参数
  • 通过卷积的到不同的值来判断黑白图像的边缘
  • 特征图:二维卷积层的输出
  • 感受野:影响元素x的所有可能输入区域
  • 填充:在输入的高和宽增加元素
  • 步幅:卷积核滑动的步数
  • 多输入通道:输入为若干个,分配等量的卷积核,再相加作为输出
  • 多输出通道:输出为若干个
  • 1X1卷积层相当于全连接层
  • 池化层:为了缓解卷积层对位置的过度敏感性
  • 二维最大池化层:求最大值
  • 二维平均池化层:求均值
  • 卷积神经网络(LeNet):卷积层保留输入形状,使的图像的高和宽的两个相关性可以被识别,卷积层还可以滑动窗口使一个卷积核和多个位置进行计算,避免参数尺寸过大
  • 卷积层的基本单位:卷积层后加最大池化层;卷积识别图像特征,池化层减少位置敏感性
  • 卷积层块的输出形状为**(批量大小, 通道, 高, 宽),当在后面加全连接层时候,会自动将样本变平**;既全连接层输入形状将变成二维,其中第一维是小批量中的样本,第二维是每个样本变平后的向量表示,且向量长度为通道、高和宽的乘积
  • 端到端:基于图像的原始像素进行分类
  • VGG网络:使用重复简单的基础块来构建模型,使用通道增倍,高宽减半的设计使得大多数卷积层具有相同的模型参数和计算复杂度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值