如果真明白了前面的,这课就不必再说了。本 ID 反复强调,本 ID 理论的关键是一套几何化的思维,因此,你需要从最基本的定义出发,而在实际操作的辨认中,这一点更重要。所有复杂的情况,其实,从最基本的定义出发,都没有任何的困难可言。
例如,对于分型,里面最大的麻烦,就是所谓的前后 K 线间的包含关系,其次,有点简单的几何思维,根据定义,任何人都可以马上得出以下的一些推论:
1、用[di,gi]记号第 i 根 K 线的最低和最高构成的区间,当向上时,顺次 n 个包含关系的 K 线组,等价于[maxdi,maxgi]的区间对应的K线,也就是说,这n个K线,和最低最高的区间为[maxdi,maxgi]的 K 线是一回事情;向下时,顺次 n 个包含关系的 K 线组,等价于[mindi,mingi]的区间对应的 K线。
2、结合律是有关本 ID 这理论中最基础的,在 K 线的包含关系中,当然也需要遵守,而包含关系,不符合传递律,也就是说,第 1、2 根 K 线是包含关系,第 2、3 根也是包含关系,但并不意味着第1、3 根就有包含关系。因此在 K 线包含关系的分析中,还要遵守顺序原则,就是先用第 1、2 根 K线的包含关系确认新的 K 线,然后用新的 K 线去和第三根比,如果有包含关系,继续用包含关系的法则结合成新的 K 线,如果没有,就按正常 K 线去处理。
3、有人可能还要问,什么是向上?什么是向下?其实