斜率优化dp:HDU3507

这里写图片描述
世界真的很大
上周学了斜率优化dp,惭愧昨天才搞懂,花了一天整理了一下思绪总结如下:
许多朴树的dp转移方程可以写成 f[i]=f[j]+w[i] 的格式,这就意味着i的决策仅仅取决于j的决策优劣,可以由单调队列把n^2优化到n,这里不赘述。
但更多的转移方程并不能化简成如下格式,比如这道hdu3507:
先叙述下题意,给出一个数组,将其分为几组,每一组算出其和的平方加上给定数m,将每一组的值求和然后输出,求最小值。
提意明确,列出状态转移方程:
f[i]=f[j]+m+(sum[i]-sum[j])^2
注意,这个方程并不能用单调队列解决,因为i的决策不仅取决于j,还取决于(sum[i]-sum[j])^2,这就无法对f进行单调队列保存。
对方程进行数学处理,假定j和k,在决策i时,j比k优:
dp[j]+m+(sum[i]-sum[j])^2<dp[k]+m+(sum[i]-sum[k])^2
直接打开消元得出:
dp[j]+sum[j]^2-2*sum[i]*sum[j]< dp[k]+sum[k]^2-2*sum[i]*sum[k]
移项相除得:
dp[j]+sum[j]^2-(dp[k]+sum[k]^2)/2*(sum[j]-sum[k])<sum[i]
仔细一看的话,左边就是一个只关于j,k的斜率表达式了。定义左边为g(j,k)<sum[i]的话,说明在决策i时,j比k优,那么可以单调队列来维护斜率,最小的斜率最优且在对首。
为什么可以这样呢?再解释一遍。
因为我们发现,在比较决策i时的前驱决策j,k谁优时,得到了一个关乎斜率的等式g(j,k),g(j,k)<sum[i]时,说明j比k优,就是说,凡是斜率比g(j,k)小,那一定没有sum[i]大,如g(a,b)<g(b,c)<g(c,d)….<g(j,k)<sum[i],那就是a没有b优,b没有c优。。。如果用单调斜率的队列,就可以瞬间排除j以前的选项,排除选项,即为优化。
现在我们的单调队列维护的就是斜率的单调递增了,在决策i时,凡是对首斜率比sum[i]小的,都可以直接弹出去,因为不优,如上解释,每次队首一定是最优的,因为后面的都大于sum[i]了,不满足g(h,h+1)

bool check_h(int i)
{
    return y(state[h+1],state[h])<=sum[i]*x(state[h+1],state[h]);
}

队尾的话直接按graham-scan(古来哈姆–斯侃胡)的方法维护下凸的凸包就行了,但注意的是,我们维护的不是整个凸包而是零碎的小节,代码:

bool check_t(int i)
{
    return y(i,state[t])*x(state[t],state[t-1])<=y(state[t],state[t-1])*x(i,state[t]);
}

x和y分别是之前数学证明里的分子和分母,因为太长了就写成了函数,如下:

int x(int u,int v)
{
    return 2*(sum[u]-sum[v]);
}
int y(int u,int v)
{
    return f[u]+sum[u]*sum[u]-(f[v]+sum[v]*sum[v]);
}

完整代码如下:

#include<stdio.h>
int sum[500050],f[500050],h,t,n,m,state[500050];
int x(int u,int v)
{
    return 2*(sum[u]-sum[v]);
}
int y(int u,int v)
{
    return f[u]+sum[u]*sum[u]-(f[v]+sum[v]*sum[v]);
}
bool check_h(int i)
{
    return y(state[h+1],state[h])<=sum[i]*x(state[h+1],state[h]);
}
bool check_t(int i)
{
    return y(i,state[t])*x(state[t],state[t-1])<=y(state[t],state[t-1])*x(i,state[t]);
}
int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&sum[i]);
            sum[i]+=sum[i-1];
        }
        h=1,t=1,state[1]=0;
        for(int i=1;i<=n;i++)
        {
            while(h<t&&check_h(i)) h++;
            f[i]=f[state[h]]+m+(sum[i]-sum[state[h]])*(sum[i]-sum[state[h]]);
            while(h<t&&check_t(i)) t--;
            state[++t]=i;
        }
        printf("%d\n",f[n]);
    }
    return 0;
}

恩,就是这样;

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值