POJ 2983 浅谈差分约束系统处理严格等价性问题

这里写图片描述
世界真的很大
差分约束系统,基于SPFA算法的复数不等关系判别及求值的系统
但是如果是完全等价的关系呢?或者说是混合式的等价关系?
当然是可以处理的,只不过需要恰恰转化一下,这个等价转不等算是差分约束常用的模型转化,要牢记

看题先:

description:

三年前,德拉科帝国与齐布联邦的星系战争爆发。 德拉科建立了一条名为格罗特的防线。 格罗特线是N线防线的直线。 由于车站的合作,子宝的海洋荣耀不能进一步前进,而是留在线外。

一个神秘的信息组X有利于向战争双方出售信息。 今天,你的情报部门的管理人员从信息组X获取了关于格罗特防御站安排的信息。您的任务是确定信息是否可靠。

信息由M个提示组成。 每个提示是精确的或模糊的。

精确提示为P A B X的形式,指防御站A为防御站B以北的X光年。

模糊的提示是V A B的形式,意味着防御站A在防御站B的北部,至少有1个光年,但精确的距离是未知的。

input:

There are several test cases in the input. Each test case starts with two integers N (0 < N ≤ 1000) and M (1 ≤ M ≤ 100000).The next M line each describe a tip, either in precise form or vague form.

output:

Output one line for each test case in the input. Output “Reliable” if It is possible to arrange N defense stations satisfying all the M tips, otherwise output “Unreliable”.

如果不管这些“精确”的条件,题目意思就是给出一堆不等式判有没有矛盾。
这个很显然可以想到差分约束系统,借由SPFA的判“负/正”环来判断题目的前提条件有没有出现自相矛盾的地方

但是差分约束系统只能解决不等问题的判别,对于“确定”条件,怎么办?
这时我们采取的方案是,将 A == B + X 变成:
A >= B + X && A <= B + X
这样我们就将一个等价关系变成了两个不等关系,同时满足两个不等关系,等价于满足那个等价关系

其余的不等关系: A >= B + X
建立最长路模型,跑SPFA,判断图中有没有正环就好

完整代码:

#include<stdio.h>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;

const int INF=0x3f3f3f3f;

struct edge
{
    int v,w,last;
}ed[400010];

queue <int> state;

int n,m,num=0,S=0;
int head[100010],dis[100010],book[100010],se[100010],in[100010];
char ss[10];

void add(int u,int v,int w)
{
    num++,in[v]++;
    ed[num].v=v;
    ed[num].w=w;
    ed[num].last=head[u];
    head[u]=num;
}

bool SPFA()
{
    memset(se,0,sizeof(se));
    for(int i=1;i<=n;i++) dis[i]=-INF;
    while(!state.empty()) state.pop();
    state.push(S),se[S]=1,dis[S]=0;
    while(!state.empty())
    {
        int u=state.front();
        se[u]=0,state.pop();
        for(int i=head[u];i;i=ed[i].last)
        {
            int v=ed[i].v;
            if(dis[v]<dis[u]+ed[i].w)
            {
                dis[v]=dis[u]+ed[i].w;
                if(!se[v])
                {
                    book[v]++,se[v]=1;
                    state.push(v);
                    if(book[v]==n) return false ;
                }
            }
        }
    }
    return true ;
}

void init()
{
    memset(head,0,sizeof(head));
    memset(book,0,sizeof(book));
    memset(in,0,sizeof(in));
    num=0;
}

int main()
{
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        init();
        for(int i=1;i<=m;i++)
        {
            int u,v,w;
            scanf("%s",ss);
            scanf("%d%d",&u,&v);
            if(ss[0]=='P')
            {
                scanf("%d",&w);
                add(v,u,w),add(u,v,-w);
            }
            else
                add(v,u,1);
        }
        for(int i=1;i<=n;i++)
            add(S,i,0);
        if(SPFA()) printf("Reliable\n");
        else printf("Unreliable\n");
    }
    return 0;
}
/*
Whoso pulleth out this sword from this stone and anvil is duly born King of all England
*/

嗯,就是这样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值