世界真的很大
差分约束系统,基于SPFA算法的复数不等关系判别及求值的系统
但是如果是完全等价的关系呢?或者说是混合式的等价关系?
当然是可以处理的,只不过需要恰恰转化一下,这个等价转不等算是差分约束常用的模型转化,要牢记
看题先:
description:
三年前,德拉科帝国与齐布联邦的星系战争爆发。 德拉科建立了一条名为格罗特的防线。 格罗特线是N线防线的直线。 由于车站的合作,子宝的海洋荣耀不能进一步前进,而是留在线外。
一个神秘的信息组X有利于向战争双方出售信息。 今天,你的情报部门的管理人员从信息组X获取了关于格罗特防御站安排的信息。您的任务是确定信息是否可靠。
信息由M个提示组成。 每个提示是精确的或模糊的。
精确提示为P A B X的形式,指防御站A为防御站B以北的X光年。
模糊的提示是V A B的形式,意味着防御站A在防御站B的北部,至少有1个光年,但精确的距离是未知的。
input:
There are several test cases in the input. Each test case starts with two integers N (0 < N ≤ 1000) and M (1 ≤ M ≤ 100000).The next M line each describe a tip, either in precise form or vague form.
output:
Output one line for each test case in the input. Output “Reliable” if It is possible to arrange N defense stations satisfying all the M tips, otherwise output “Unreliable”.
如果不管这些“精确”的条件,题目意思就是给出一堆不等式判有没有矛盾。
这个很显然可以想到差分约束系统,借由SPFA的判“负/正”环来判断题目的前提条件有没有出现自相矛盾的地方
但是差分约束系统只能解决不等问题的判别,对于“确定”条件,怎么办?
这时我们采取的方案是,将 A == B + X 变成:
A >= B + X && A <= B + X
这样我们就将一个等价关系变成了两个不等关系,同时满足两个不等关系,等价于满足那个等价关系
其余的不等关系: A >= B + X
建立最长路模型,跑SPFA,判断图中有没有正环就好
完整代码:
#include<stdio.h>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int INF=0x3f3f3f3f;
struct edge
{
int v,w,last;
}ed[400010];
queue <int> state;
int n,m,num=0,S=0;
int head[100010],dis[100010],book[100010],se[100010],in[100010];
char ss[10];
void add(int u,int v,int w)
{
num++,in[v]++;
ed[num].v=v;
ed[num].w=w;
ed[num].last=head[u];
head[u]=num;
}
bool SPFA()
{
memset(se,0,sizeof(se));
for(int i=1;i<=n;i++) dis[i]=-INF;
while(!state.empty()) state.pop();
state.push(S),se[S]=1,dis[S]=0;
while(!state.empty())
{
int u=state.front();
se[u]=0,state.pop();
for(int i=head[u];i;i=ed[i].last)
{
int v=ed[i].v;
if(dis[v]<dis[u]+ed[i].w)
{
dis[v]=dis[u]+ed[i].w;
if(!se[v])
{
book[v]++,se[v]=1;
state.push(v);
if(book[v]==n) return false ;
}
}
}
}
return true ;
}
void init()
{
memset(head,0,sizeof(head));
memset(book,0,sizeof(book));
memset(in,0,sizeof(in));
num=0;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
init();
for(int i=1;i<=m;i++)
{
int u,v,w;
scanf("%s",ss);
scanf("%d%d",&u,&v);
if(ss[0]=='P')
{
scanf("%d",&w);
add(v,u,w),add(u,v,-w);
}
else
add(v,u,1);
}
for(int i=1;i<=n;i++)
add(S,i,0);
if(SPFA()) printf("Reliable\n");
else printf("Unreliable\n");
}
return 0;
}
/*
Whoso pulleth out this sword from this stone and anvil is duly born King of all England
*/
嗯,就是这样