索尼相机照片清理软件

本文介绍了一个使用Python编写的脚本,帮助用户在处理索尼相机拍摄的JPG和RAW照片时,通过在Windows环境下删除多余的文件,实现只保留有对应文件的照片,便于后期挑选和管理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在使用索尼相机拍摄照片的时候有时我们需要同时拍摄JPG格式和RAW格式,这在后期选图的时候给我们带来一些麻烦。我们固然可以选用Br来管理照片,但是现在我们可以有一个更轻量的软件(8.8MB)来做到一部分功能。
我们将照片从SD卡导出到电脑,会发现很多同名的.arw和.jpg文件。但是,Windows自带的照片app打不开索尼的.arw格式的文件,只能打开.jpg格式的文件。于是,我们就可以想到,能不能直接看jpg照片,不满意的删除,然后根据剩下的jpg图片去筛选raw文件?
下面使用python实现这一功能:

import Tkinter as teak
from tkinter import filedialog
from tkinter import messagebox
import os
import glob
import sys


def cleanup_folder(folder_path):
    # 获取文件夹中所有的.jpg和.raw文件
    jpg_files = glob.glob(os.path.join(folder_path, '*.jpg'))
    raw_files = glob.glob(os.path.join(folder_path, '*.arw'))

    # 初始化jpg和raw文件的计数器
    initial_jpg_count = len(jpg_files)
    initial_raw_count = len(raw_files)

    # 创建两个空列表,分别存储所有.jpg和.raw文件的名称(不包括扩展名)
    jpg_names = [os.path.splitext(os.path.basename(f))[0] for f in jpg_files]
    raw_names = [os.path.splitext(os.path.basename(f))[0] for f in raw_files]

    # 删除没有对应.jpg文件的.raw文件
    for raw_file, raw_name in zip(raw_files, raw_names):
        if raw_name not in jpg_names:
            os.remove(raw_file)
            print(f'Deleted {raw_file} because it has no corresponding .jpg file.')

    # 删除没有对应.raw文件的.jpg文件
    for jpg_file, jpg_name in zip(jpg_files, jpg_names):
        if jpg_name not in raw_names:
            os.remove(jpg_file)
            print(f'Deleted {jpg_file} because it has no corresponding .arw file.')

    # 重新计算并打印处理后的.jpg和.raw文件的数量
    final_jpg_files = glob.glob(os.path.join(folder_path, '*.jpg'))
    final_raw_files = glob.glob(os.path.join(folder_path, '*.arw'))
    print(f'Initial .jpg file count: {initial_jpg_count}')
    print(f'Initial .arw file count: {initial_raw_count}')
    print(f'Final .jpg file count: {len(final_jpg_files)}')
    print(f'Final .arw file count: {len(final_raw_files)}')
    print('Cleanup complete. Files are now consistent.')


def select_folder_and_cleanup():
    root = tk.Tk()
    root.withdraw()  # 不显示主窗口
    folder_path = filedialog.askdirectory()  # 弹出对话框让用户选择文件夹
    if folder_path:  # 如果用户选择了文件夹
        cleanup_folder(folder_path)
        tk.messagebox.showinfo("完成", "文件夹清理完成!")
    else:
        tk.messagebox.showinfo("取消", "操作已取消")


if __name__ == "__main__":
    select_folder_and_cleanup()

在terminnal里使用如下命令可以将其打包成.exe文件(还可以根据自己的想法添加图标)

 pyinstaller --onefile --icon=A7C2.ico cleanup.py

如果想直接使用该exe文件可以到这里下载:
https://download.csdn.net/download/BerryNard/89095588

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值