[图论]--------Prufer 序列

简介

Prufer序列是将带标号无根树用序列的形式来表示,一般用于和树有关的组合计数问题。

Prufer序列

Prufer序列的建立方式是:每次找到树中编号最小的叶结点,将这个叶结点的父节点加入到Prufer序列中,然后将叶结点删除。重复这个操作直到树中只剩下两个结点(不考虑只有一个结点的树)。最终得到一个长度为 N − 2 N-2 N2 的数列, N N N 为结点总数。

这里有一个结论: N N N 个结点的完全图的生成树,和长度为 N − 2 N-2 N2 ,每一项值域在 [ 1 , N ] [1, N] [1,N]之间的数列构成双射,也就是说每一棵 N N N 个结点的树,对应了唯一一个数列 P r u f e r = { p 1 , p 2 . . . . . . p N − 2 } Prufer=\{p_1,p_2......p_{N-2}\} Prufer={p1,p2......pN2}。同时这样一个数列也唯一对应了一棵结点数为 N N N 的树。

我们学习生成树计数问题的时候接触过凯莱公式: N N N 个结点的完全图生成树的个数为 N N − 2 N^{N-2} NN2。这个公式有很多方法证明,但用Prufer序列是最简单的,一旦知道生成树和数列之间的双射关系,马上就可以得到该公式。

Prufer序列的构造

维护一个变量,记录即将删除的叶结点,同时记录每个结点的度数,以便我在删除叶结点时可以判断是否产生了新的叶结点。

  1. 删除 p p p 指向的结点,并检查是否产生新的叶结点。
  2. 如果产生新的叶结点,假设编号为 x x x,我们比较 p p p x x x 的大小关系。如果 x > p x>p x>p ,那么不做其他操作;否则就立刻删除 x x x,然后检查删除 后是否产生新的叶结点,重复2 步骤,直到未产生新节点或者新节点的编号 > p >p >p
  3. 让指针 p p p 自增直到遇到一个未被删除叶结点为止;

这样做的目的是让每个结点只被访问一次。如果 x > p x>p x>p 那么 p p p 在向后扫描的时候会到达 x x x 所以此时不需要处理。如果 x < p x<p x<p ,由于此时 p p p 已经是当前编号最小的叶结点了,如果 x x x 是新的叶结点,他的编号比 p p p 更小,那么 x x x 是新的编号最小的叶结点。

这个算法的时间复杂度为线性,代码如下:

vector<vector<int>> adj;
vector<int> parent;

void dfs(int v) {
  for (int u : adj[v]) {
    if (u != parent[v]) parent[u] = v, dfs(u);
  }
}

vector<int> pruefer_code() {
  int n = adj.size();
  parent.resize(n), parent[n - 1] = -1;
  dfs(n - 1);

  int ptr = -1;
  vector<int> degree(n);
  for (int i = 0; i < n; i++) {
    degree[i] = adj[i].size();
    if (degree[i] == 1 && ptr == -1) ptr = i;
  }

  vector<int> code(n - 2);
  int leaf = ptr;
  for (int i = 0; i < n - 2; i++) {
    int next = parent[leaf];
    code[i] = next;
    if (--degree[next] == 1 && next < ptr) {
      leaf = next;
    } else {
      ptr++;
      while (degree[ptr] != 1) ptr++;
      leaf = ptr;
    }
  }
  return code;
}

Prufer序列重构树

已知Prufer序列,我们可以还原出树。同线性构造 Prufer 序列的方法。在删度数的时侯会产生新的叶结点,于是判断这个叶结点与指针 p p p 的大小关系,如果更小就优先考虑它。

vector<pair<int, int>> pruefer_decode(vector<int> const& code) {
  int n = code.size() + 2;
  vector<int> degree(n, 1);
  for (int i : code) degree[i]++;

  int ptr = 0;
  while (degree[ptr] != 1) ptr++;
  int leaf = ptr;

  vector<pair<int, int>> edges;
  for (int v : code) {
    edges.emplace_back(leaf, v);
    if (--degree[v] == 1 && v < ptr) {
      leaf = v;
    } else {
      ptr++;
      while (degree[ptr] != 1) ptr++;
      leaf = ptr;
    }
  }
  edges.emplace_back(leaf, n - 1);
  return edges;
}

图的连通相关问题

  1. N N N 个结点的完全图的有根生成树个数: N N − 1 N^{N-1} NN1

在原来的基础上选择一个根即可 N N − 2 × N = N N − 1 N^{N-2}\times N =N^{N-1} NN2×N=NN1

  1. N N N 个结点的完全图生成树个数,要求第 i i i 个点的度数为 d i d_i di

由prufer序列的性质可知,结点度数即该结点在序列中出现的次数加一,没出现过即为叶结点。所以该问题相当于 i i i 在序列中恰好出现 d i − 1 d_i-1 di1 次,所以生成树总数为 ( N − 2 ) ! ∏ i = 1 N ( d i − 1 ) ! \frac{(N-2)!}{\prod_{i=1}^{N}(d_i-1)!} i=1N(di1)!(N2)!

  1. 一个 N N N 个点的非连通图有 k k k 个连通块,加入 k − 1 k-1 k1条边使得图连通。求方案数。

设第 i i i 个连通块的结点数为 s i z e [ i ] size[i] size[i] ,可以把连通块看成一个点,转换成生成树问题,方案数为 N k − 2 N^{k-2} Nk2,又因为每个连通块有 s i z e [ i ] size[i] size[i] 种方法可以和父节点连接,所以乘上 ∏ i = 1 k ( s i z e [ i ] ) \prod_{i=1}^{k}(size[i]) i=1k(size[i])

总的答案就是 N k − 2 ∏ i = 1 k ( s i z e [ i ] ) N^{k-2}\prod_{i=1}^{k}(size[i]) Nk2i=1k(size[i]),具体证明略繁琐,需要用到二项式定理。

题目

洛谷P6086 【模板】Prufer 序列.

洛谷P4430 小猴打架.

CF156D Clues.

洛谷P2290 [HNOI2004]树的计数.

洛谷P2624 [HNOI2008]明明的烦恼.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值