官方文档
https://hadoop.apache.org/docs/r3.3.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
文章目录
一、HDFS概述
HDFS是分布式文件系统中的一种,通过目录树定位文件。
- 适用场景:一次写入、多次读出、不支持修改、适用于数据分析。
- 优点:高容错性、存储数据规模大、可使用廉价机器。
- 缺点:不适合低延时数据访问、不适合大量小文件的存储、不支持并发写入、仅支持数据追加,不支持随机修改
二、HDFS组成
NameNode
:文件系统的主管、管理命名空间、副本策略、数据块映射信息、客户端读写请求。DataNode
:存储数据库、执行NameNode下达的读/写操作。Secondary NameNode
:辅助NameNode,定期合并镜像文件(Fsimage)和编辑日志(Edits),在NameNode出错后,可使用2NN恢复。Client
:即客户端
三、HDFS的Shell命令
在Linux本地,执行Shell命令操作HDFS文件系统,实现对HDFS文件系统的管理,以及本地与HDFS文件系统之间的上传下载操作。
- 基本语法:
进入Hadoop软件安装目录(也可配置环境变量),执行:
$ bin/hadoop fs 具体命令
或者$ bin/hdfs dfs 具体命令
- 常用命令参数:
命令参数 | 作用 |
---|---|
-help: | 查看帮助 |
-ls: | 显示目录信息 |
-mkdir: | 在HDFS上创建目录 |
-moveFromLocal: | 从本地剪切粘贴到HDFS |
-appendToFile: | 追加一个文件到已经存在的文件末尾 |
-cat: | 显示文件内容 |
-chgrp 、-chmod、-chown: | 与Linux文件系统中的用法一样,修改文件所属权限 |
-put、-copyFromLocal: | 从本地文件系统中拷贝文件到HDFS路径去 |
-copyToLocal: | 从HDFS拷贝到本地 |
-cp : | 从HDFS的一个路径拷贝到HDFS的另一个路径 |
-mv: | 在HDFS目录中移动文件 |
-get: | 等同于copyToLocal,就是从HDFS下载文件到本地 |
-getmerge: | 合并下载多个文件 |
-tail: | 显示一个文件的末尾 |
-rm: | 删除文件或文件夹 |
-rmdir: | 删除空目录 |
-du: | 统计文件夹的大小信息 |
-setrep: | 设置HDFS中某个文件的副本数量 |
四、HDFS客户端操作
在Linux本地可以使用前面的Shell命令操作HDFS系统,但是这种方法不适用于所有情况,例如我要在其他主机上通过Java程序操作HDFS文件系统实现上传下载等操作。
Hadoop提供了相应的API接口方便对HDFS进行连接。步骤包括:
- 安装Hadoop并配置环境变量。(如果在Windows下,则需要Windows下编译的Hadoop)
- 创建Maven工程并导入对应的Hadoop依赖。
- 编写Java程序连接HDFS,得到FileSystem对象。
- 调用相应的方法对HDFS进行操作。
在pom.xml导入依赖:
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>RELEASE</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-core</artifactId>
<version>2.8.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.7.2</version>
</dependency>
<dependency>
<groupId>jdk.tools</groupId>
<artifactId>jdk.tools</artifactId>
<version>1.8</version>
<scope>system</scope>
<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath>
</dependency>
</dependencies>
在HDFS上创建目录的案例:
public class HdfsClient{
@Test
public static void main(String[] args) throws IOException, InterruptedException, URISyntaxException{
// 1 获取文件系统
Configuration configuration = new Configuration();
// 配置在集群上运行
// configuration.set("fs.defaultFS", "hdfs://hadoop101:9000");
// FileSystem fs = FileSystem.get(configuration);
FileSystem fs = FileSystem.get(new URI("hdfs://hadoop101:9000"), configuration, "Bessen");
// 2 创建目录
fs.mkdirs(new Path("/testAPI/mkdirs"));
// 3 关闭资源
fs.close();
}
}
五、HDFS数据流读写流程
写数据:
- 客户端向NameNode请求写入,得到响应。
- 客户端请求上传第一个块,NameNode根据距离和DataNode负载情况选择上传节点,并告诉客户端。
- 客户端向待上传的节点请求建立传输通道,各节点依次响应。
- 客户端向通道第一个节点上传数据,各节点依次将内存中的数据向通道其他节点传输。
- 传输完毕后,各节点将内存中的数据序列化到磁盘。
读数据:
六、SecondaryNameNode工作机制
为了保证效率,NameNode保存的元数据需要放在内存中,同时在磁盘中保存备份的元数据到镜像文件Fsimage
。由于新的元数据无法及时写入到Fsimage,所以NameNode将元数据的增删改操作暂时保存到编辑日志文件Edits
中。
合并编辑日志Edits和镜像文件Fsimage占用的内存较大,为了避免影响NameNode,因此将合并工作交给了SecondaryNameNode,2NN会定期或在Edits数据过多时进行CheckPoint工作,具体流程如下图所示。
CheckPoint时间间隔设置:
- hdfs-default.xml(该文件在Hadoop一个jar包下)
<!-- SecondaryNameNode每隔一小时执行一次checkpoint -->
<property>
<name>dfs.namenode.checkpoint.period</name>
<value>3600</value>
</property>
NameNode故障处理:
将SecondaryNameNode中数据拷贝到NameNode存储数据的目录。
- kill -9 NameNode进程
- 删除NameNode存储的数据(/opt/module/hadoop-2.7.2/data/tmp/dfs/name)
$ rm -rf /opt/module/hadoop-2.7.2/data/tmp/dfs/name/*
- 拷贝SecondaryNameNode中数据到原NameNode存储数据目录
$ scp -r Bessen@hadoop03:/opt/module/hadoop-2.7.2/data/tmp/dfs/namesecondary/* /opt/module/hadoop-2.7.2/data/tmp/dfs/name/
- 重新启动NameNode
$ sbin/hadoop-daemon.sh start namenode
七、DataNode工作机制
DataNode节点的注册机制和心跳机制如下图所示:
- 通常会使用crc等校验方法保证存储数据的完整性
- DataNode与NameNode通过心跳保持长连接,但一个节点掉线时长超过超时时长,则判断节点死亡。超时时长
TimeOut = 2 * dfs.namenode.heartbeat.recheck-interval + 10 * dfs.heartbeat.interval
,两个参数设置如下: - etc/hadoop/hdfs-site.xml
<!-- 单位毫秒 -->
<property>
<name>dfs.namenode.heartbeat.recheck-interval</name>
<value>300000</value>
</property>
<!-- 单位秒 -->
<property>
<name>dfs.heartbeat.interval</name>
<value>3</value>
</property>
节点的服役与退役
(1)服役新节点。
- 首先确保新节点的Hadoop版本及配置文件与集群其他主机一致。
- 如果新主机克隆自其他节点,需修改主机名、ip地址并删除data和log数据。
- 在NameNode的白名单
etc/hadoop/dfs.hosts
添加新节点(文件需自己创建)。 - 如果未配置过白名单,需修改NameNode的配置文件并分发:
<!-- 白名单文件位置 -->
<property>
<name>dfs.hosts</name>
<value>/opt/module/hadoop-2.7.2/etc/hadoop/dfs.hosts</value>
</property>
然后分别刷新NameNode和ResourceManager节点:
$ hdfs dfsadmin -refreshNodes
$ yarn rmadmin -refreshNodes
- 使用单节点启动的方式启动节点:
$ sbin/hadoop-daemon.sh start datanode
$ sbin/yarn-daemon.sh stop nodemanager
注意: 如果希望新节点能够通过群起集群的方式启动,还需配置集群的分发脚本和slaves文件。
(2)退役旧节点
退役节点只需将该节点加入黑名单即可,黑名单权限高于白名单,黑名单上的节点会被强制退出。
如果未配置过黑名单,需在NameNode创建文件etc/hadoop/dfs.hosts.exclude
,然后修改NameNode的配置文件并分发:
<!-- 黑名单文件位置 -->
<property>
<name>dfs.hosts.exclude</name>
<value>/opt/module/hadoop-2.7.2/etc/hadoop/dfs.hosts.exclude</value>
</property>
最后分别刷新NameNode和ResourceManager节点。
八、HDFS集群安全模式
NameNode启动时,集群进入安全模式,NameNode进行元数据的准备并从DataNode获取块信息,此时不能进行文件的上传下载操作。当满足“最小副本条件”时,集群在30秒后退出安全模式。
安全模式相关命令行指令:
- 查看安全模式状态:
bin/hdfs dfsadmin -safemode get
- 进入安全模式状态:
bin/hdfs dfsadmin -safemode enter
- 离开安全模式状态:
bin/hdfs dfsadmin -safemode leave
- 等待状态,类似Thread.sleep():
bin/hdfs dfsadmin -safemode wait
九、HDFS的HA高可用
NameNode存在单点故障(SPOF
)的问题,Hadoop2.0开始有了HA
(high available).
Hadoop给HA提供了两种实现方式,具体搭建过程见官网:Quorum Journal Manager,QJM和NFS
HA的原理就是配置多个NameNode,一个Active
活跃运行,其他Standby
作为备用,Standby随时通过JournalNode
(一个集群,至少三台主机,采用半数选择协议)上的Edits文件管理系统向Active同步元数据。
每个NameNode都在ZooKeeper
中维护了一个持久会话,如果Active机器崩溃,ZooKeeper中的会话终止,ZooKeeper会选择另一个NameNode触发故障转移。ZooKeeper集群会选择一个Standby作为新的活跃NameNode,首先通过SSH向原来的NameNode发送kill命令补刀,补刀成功后将被选中的Standby切换为Active.(扶持傀儡政权)
故障转移的机制如下图所示: