1、原码:
因为计算机元件只能有2个状态,故利用0和1来表示数值,即二进制。计算机二级制数字中,最高位当作符号位,默认0为正数,1为负数,原码能够正常表达正数和负数,0则有+0和-0这两种状态。
由于计算机没有减法,所以减法在运算时相当于加上负数,如【2-1】其实是【2+(-1)】,当负数参与运算时,由于符号位的存在,会导致基于源码的计算结果错误。
eg:【2-1】源码计算(4bit情况下)
0 010
1 001
-------
1 011
结果是-3,而实际应当是2-1=1才对
2、反码:
为了解决源码中负数运算错误的问题,引入反码概念。即针对负数,除符号位外,运算位进行0和1的互换,计算时如果发生越位,则在末尾+1。但是反码中仍存在+0和-0的情况,且计算式要额外资源处理越位的情况。
eg:【2-1】反码计算(4bit情况下)
0 010
1 110
-------
0 001(其实是10000,但本处默认是4bit,左边1发生越位了,所以考虑越位情况,末尾+1,变成0001)
结果是1,结果正确。
3、补码
同样针对负数,为了解决反码中【+0和-0共存】和【计算越位的问题】,在反码基础上+1得到补码。
这时候-0的1000(反码)+1= 0 000,和+0相同了
补码时数值计算时的直接值。
eg:【2-1】补码计算(4bit情况下)
0 010
1 111
-------
0 001(其实是10001,由于默认是4bit,左边1仍然越位,但不用再考虑越位情况了,结果不变)
结果是1,结果正确,而且计算的时候不需要单独考虑越位的情况。
总结一下:
几种码均为负数参与计算而设计,需要对负数改造,正数保持不变。
数值计算时使用补码来参与计算。