BZOJ1621: [Usaco2008 Open]Roads Around The Farm分岔路口

Description

    约翰的N(1≤N≤1,000,000,000)只奶牛要出发去探索牧场四周的土地.她们将沿着一条路走,一直走到三岔路口(可以认为所有的路口都是这样的).这时候,这一群奶牛可能会分成两群,分别沿着接下来的两条路继续走.如果她们再次走到三岔路口,那么仍有可能继续分裂成两群继续走.    奶牛的分裂方式十分古怪:如果这一群奶牛可以精确地分成两部分,这两部分的牛数恰好相差K(1≤K≤1000),那么在三岔路口牛群就会分裂.否则,牛群不会分裂,她们都将在这里待下去,平静地吃草.    请计算,最终将会有多少群奶牛在平静地吃草.

Input

   两个整数N和K.

Output

    最后的牛群数.

Sample Input

6 2

INPUT DETAILS:

There are 6 cows and the difference in group sizes is 2.

Sample Output

3

OUTPUT DETAILS:

There are 3 final groups (with 2, 1, and 3 cows in them).

6
/ \
2 4
/ \
1 3

HINT

   6只奶牛先分成2只和4只.4只奶牛又分成1只和3只.最后有三群奶牛.


题解:

  直接模拟就好,没什么好说的吧……队列实现,或者递归实现,我用的队列

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <queue>
using namespace std;
queue <int > Q;
int main(int argc, char *argv[])
{
    int n,k,t,d=0;
    scanf("%d%d",&n,&k);
    Q.push(n);
    while(!Q.empty())
    {
        t=Q.front();
        if(t>k&&(t-k)%2==0)
        Q.push((t-k)/2),Q.push((t-k)/2+k);
        else d++;
        Q.pop();
    }
    printf("%d\n",d);
    return 0;
}



相关推荐
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页