背景
SuperBrother在机房里闲着没事干(再对比一下他的NOIP,真是讽刺啊......),于是便无聊地开始玩“打鼹鼠”......
描述
在这个“打鼹鼠”的游戏中,鼹鼠会不时地从洞中钻出来,不过不会从洞口钻进去(鼹鼠真胆大……)。洞口都在一个大小为n(n<=1024)的正方形中。这个正方形在一个平面直角坐标系中,左下角为(0,0),右上角为(n-1,n-1)。洞口所在的位置都是整点,就是横纵坐标都为整数的点。而SuperBrother也不时地会想知道某一个范围的鼹鼠总数。这就是你的任务。
格式
输入格式
每个输入文件有多行。
第一行,一个数n,表示鼹鼠的范围。
以后每一行开头都有一个数m,表示不同的操作:
m=1,那么后面跟着3个数x,y,k(0<=x,y<n),表示在点(x,y)处新出现了k只鼹鼠;
m=2,那么后面跟着4个数x1,y1,x2,y2(0<=x1<=x2<n,0<=y1<=y2<n),表示询问矩形(x1,y1)-(x2,y2)内的鼹鼠数量;
m=3,表示老师来了,不能玩了。保证这个数会在输入的最后一行。
询问数不会超过10000,鼹鼠数不会超过maxlongint。
输出格式
对于每个m=2,输出一行数,这行数只有一个数,即所询问的区域内鼹鼠的个数。
限制
各个测试点1s
提示
水题一道。
所有数据均为随机生成,包括样例……
题解:
二维树状数组,查询相当于矩阵前缀和之后做差。。有种容斥的感觉……
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXN = 1025;
int a[MAXN][MAXN], Tree[MAXN][MAXN];
int n, m;
inline int lowbit(int x)
{
return x&(-x);
}
inline void Modify(int x,int y,int tar)
{
int i, j;
for (i = x; i <= n; i+=lowbit(i))
for (j = y; j <= m; j+=lowbit(j))
Tree[i][j] += tar;
}
inline int Query(int x, int y)
{
int i, j;
int ans = 0;
for (i = x; i; i -= lowbit(i))
for (j = y; j; j -= lowbit(j))
ans += Tree[i][j];
return ans;
}
int main(int argc, char *argv[])
{
int i, j, x, y, c;
int x1, x2, y1, y2;
int op;
int ans;
scanf("%d", &n);
m = n;
while (cin>>op)
{
if (op == 3) return 0;
if (op == 1)
{
scanf("%d%d%d", &x, &y, &c);
Modify(x+1, y+1, c);
}
else
{
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
ans = Query(x1, y1) + Query(x2+1, y2+1) - Query(x1, y2+1) - Query(x2+1, y1);
printf("%d\n", ans);
}
}
return 0;
}