Spark编程: Spark SQL基本操作 2020.11.01


建下列JSON格式的数据复制到Linux系统中,并保存命名为employee.json

{ "id":1 , "name":" Ella" , "age":36 } 
{ "id":2, "name":"Bob","age":29 } 
{ "id":3 , "name":"Jack","age":29 } 
{ "id":4 , "name":"Jim","age":28 }
{ "id":4 , "name":"Jim","age":28 } 
{ "id":5 , "name":"Damon" } 
{ "id":5 , "name":"Damon" }

为employee.json 创建DataFrame, 并写出Scala语句完成下列操作:

在这里插入图片描述
在这里插入图片描述

(1)查询所有数据;

import spark.implicits._
val df=spark.read.json("file:///home/beyond-dhl/Desktop/sparkSQL/employee.json")
df.show()

在这里插入图片描述

(2)查询所有数据,并去除重复的数据;

df.distinct().show()

在这里插入图片描述

(3)查询所有数据, 打印时去除id字段;

df.drop(df("id")).show()

在这里插入图片描述

(4)筛选出age>30 的记录;

df.filter(df("age")>30).show()

在这里插入图片描述

(5)将数据按age分组

df.groupBy(df("age")).count.show()

在这里插入图片描述

(6)将数据按neme升序排列

df.sort(df("name").asc).show()

在这里插入图片描述

(7)取出前3行数据

df.show(3)

在这里插入图片描述

(8)打印时修改name 的列名 为 username

df.select(df("name").as("username")).show()

在这里插入图片描述

(9)age 的平均值(agg是聚合操作)

df.agg("age"->"avg").show()

在这里插入图片描述

(10)age 的最小值

df.agg("age"->"min").show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_大木_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值