bzoj2287【POJ Challenge】消失之物 ( 背包DP+补集转化 )

53 篇文章 0 订阅
51 篇文章 1 订阅

bzoj2287【POJ Challenge】消失之物

原题地址http://www.lydsy.com/JudgeOnline/problem.php?id=2287

题意:
ftiasch 有 N 个物品, 体积分别是 W1, W2, …, WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” – 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, …, WN, 物品的体积。

Output

一个 N × M 的矩阵, Count(i, x)的末位数字。

Sample Input

3 2
1 1 2

Sample Output
11
11
21

Hint
如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。

数据范围
1 ≤ N ≤ 2e3, 1 ≤ M ≤ 2e3

题解:

最妙的就是这个补集转化。

很容易求出一般的装满容积为 x 的背包的方法数 f[j]
显然不能枚举每个物品不取都重新跑一边f,于是考虑如何由 f[j] 求c[i][j]。
c[i][j]是不选 i 装满 j 的方案数,
当j < w[i]时,c[i][j]=f[j]
当j >=w[i]时,c[i][j]=f[j]-选 i 装满 j 的方案数
而对于选 i 装满 j 的方案数,考虑在这些方案中不选这个i,那么
选 i 装满 j 的方案 就是 不选i 装满 j-w[i] 的方案再选一个i
所以 c[i][j]=f[j]-c[i][j-w[i]]

WA点,是求末位数字,没有空格。

代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=2005;
int f[N],g[N][N],n,m,w[N];
int main()
{

    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) 
    scanf("%d",&w[i]);
    f[0]=1;
    for(int i=1;i<=n;i++)
    {
        for(int j=m;j>=0;j--)
        {
            if(j>=w[i]&&f[j-w[i]]) {f[j]+=f[j-w[i]];f[j]%=10;}
        }
    }
    for(int i=1;i<=n;i++) g[i][0]=1;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    {
        if(j<w[i]) g[i][j]=f[j];
        else g[i][j]=(f[j]-g[i][j-w[i]]+10)%10;     
    }

    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    {
        printf("%d",g[i][j]);
        if(j==m) printf("\n");
    }


    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值