bzoj1296 [SCOI2009]粉刷匠 ( 分组背包DP )

51 篇文章 1 订阅
7 篇文章 0 订阅

bzoj1296 [SCOI2009]粉刷匠

原题地址http://www.lydsy.com/JudgeOnline/problem.php?id=1296

题意:
windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色(’0’表示红色,’1’表示蓝色)。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

数据范围
1 <= N,M <= 50 ; 0 <= T <= 2500 。

题解:

首先,有N个木板,不能混刷,只能粉刷 T 次,
由此可以想到,如果我们知道每块木板刷1~m次最多刷对多少,就可以分组背包了。
对于每块木板刷1~m次最多刷对多少,
对每块木板来一个m^2的DP(刷多于m次没有意义)
dp[i][j]表示刷了前i块,已刷了j次,最多刷对多少。
dp[i][j]=max(dp[i][j],dp[k][j-1]+max(i-k到i段1的个数,i-k到i段0的个数)) 表示在此时换刷子。

最后关于分组背包
for 组数 1-n
for 容积 m-1
for 该组的每个物品
三者顺序和容积 m-1的顺序是为了保证每组只选一个

(忘了,自己yy了好久)
代码:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=60;
int n,m,t,a[N][N],dp[N][N],g[N][N],f[3000],sum[N]; 
//dp[i][j] 前i格,刷j次最多刷对几个 
int main()
{
    scanf("%d%d%d",&n,&m,&t);
    for(int i=1;i<=n;i++)
    for(int j=1;j<=m;j++)
    scanf("%1d",&a[i][j]);

    for(int r=1;r<=n;r++)
    {
        sum[0]=0;
        for(int i=1;i<=m;i++)
        sum[i]=sum[i-1]+a[r][i];
        memset(dp,0,sizeof(dp));
        for(int i=1;i<=m;i++)  
        for(int j=1;j<=i;j++)
        for(int k=0;k<i;k++)    
        dp[i][j]=max(dp[i][j],dp[k][j-1]+max(sum[i]-sum[k],i-k-sum[i]+sum[k]));             
        for(int i=1;i<=m;i++)
        g[r][i]=dp[m][i];                   
    }
    for(int i=1;i<=n;i++)
    for(int v=t;v>=1;v--)
    for(int j=1;j<=m;j++)
    if(v>=j) f[v]=max(f[v],f[v-j]+g[i][j]);

    printf("%d\n",f[t]);

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值