bzoj2730 [HNOI2012]矿场搭建
原题地址:http://www.lydsy.com/JudgeOnline/problem.php?id=2730
题意:
给定一个无向图(M条边),在图中设立出口,使得任意删掉一个点,其他任意点,都能到达一个出口,问至少要设多少个出口,和设出口的方案数有多少。
数据范围
M≤500
题解:
首先,对于一个联通块,如果内部没有割点,那么需要建的出口数是两个。
对于有割点的连通块,如果我们把一个割点删掉,那么图不再联通,分割出的子图都需要一个出口。
因此,考虑对于一个点双连通分量,只与一个割点相连,那么如果这个割点删去,其内部必须还要有一个出口才行。
如果与两个割点相连,其中一个被删,那么它还可以顺着另一个割点,走到另一个点双连通分量,最终走到一个只与一个割点相连的点双连通分量,就有出口了,因此其内部可以部不建出口。
如果不与任何割点相连,如果他其大小为1,只需建一个出口,不然建两个出口。
统计的时候就按以上讨论,C(size,1)或C(size,2)乘起来即可。
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int N=505;
int m,n,head[N],to[2*N],nxt[2*N],num=0;
int dfn[N],low[N],iscut[N],inc=0,size,cnt,vis[N];
void build(int u,int v)
{
num++;
to[num]=v;
nxt[num]=head[u];
head[u]=num;
}
void init()
{
memset(head,0,sizeof(head)); num=0;
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(vis,0,sizeof(vis));
memset(iscut,0,sizeof(iscut));
inc=0;
}
void dfs(int u,int f)
{
int ch=0;
inc++; low[u]=dfn[u]=inc;
for(int i=head[u];i;i=nxt[i])
{
int v=to[i];
if(v==f) continue;
if(!dfn[v])
{
ch++;
dfs(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u]) iscut[u]=1;
}
else low[u]=min(low[u],dfn[v]);
}
if(ch==1&&f==0) iscut[u]=0;
}
void dfs2(int u)
{
vis[u]=inc; size++;
for(int i=head[u];i;i=nxt[i])
{
int v=to[i];
if(vis[v]>=inc) continue;
if(iscut[v]) {vis[v]=inc;cnt++;}
else dfs2(v);
}
}
int main()
{
int cas=0;
while(1)
{
scanf("%d",&m); cas++;
if(m==0) break;
n=0; init();
for(int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
n=max(n,max(u,v));
build(u,v);
build(v,u);
}
for(int i=1;i<=n;i++)
if(!dfn[i]) dfs(i,0);
inc=0;
LL ans1=0;LL ans2=1LL;
for(int i=1;i<=n;i++)
{
size=0; cnt=0; inc++;
if(!vis[i]&&!iscut[i])
{
dfs2(i);
if(cnt==0)
{
if(size==1) {ans1=ans1+1;}
else
{
ans1=ans1+2;
ans2=ans2*1LL*size*1LL*(size-1)/2;
}
}
else if(cnt==1)
{
ans1++;
ans2=ans2*1LL*size;
}
}
}
printf("Case %d: %lld %lld\n",cas,ans1,ans2);
}
return 0;
}