Pyorch-CUDA error: device-side assert triggered, THCTensorScatterGather, Assertion indexValue failed

ScatterGather的index溢出报错?

用pytorch在训练模型的时候,遇到了奇怪的报错。
ScatterGather,一看似乎出错就在scatter或者gather的操作上。也就是index溢出的问题,看描述:indexValue >= 0 && indexValue < tensor.sizes[dim]
具体的报错如下:

/opt/conda/conda-bld/pytorch_1579022060824/work/aten/src/THC/THCTensorScatterGather.cu:188: void THCudaTensor_scatterFillKernel(TensorInfo<Real, IndexType>, TensorInfo<long, IndexType>, Real, int, IndexType) [with IndexType = unsigned int, Real = float, Dims = 3]: block: [1,0,0], thread: [32,0,0] Assertion indexValue >= 0 && indexValue < tensor.sizes[dim] failed.
/opt/conda/conda-bld/pytorch_1579022060824/work/aten/src/THC/THCTensorScatterGather.cu:188: void THCudaTensor_scatterFillKernel(TensorInfo<Real, IndexType>, TensorInfo<long, IndexType>, Real, int, IndexType) [with IndexType = unsigned int, Real = float, Dims = 3]: block: [1,0,0], thread: [33,0,0] Assertion indexValue >= 0 && indexValue < tensor.sizes[dim] failed.
/opt/conda/conda-bld/pytorch_1579022060824/work/aten/src/THC/THCTensorScatterGather.cu:188: void THCudaTensor_scatterFillKernel(TensorInfo<Real, IndexType>, TensorInfo<long, IndexType>, Real, int, IndexType) [with IndexType = unsigned int, Real = float, Dims = 3]: block: [1,0,0], thread: [34,0,0] Assertion indexValue >= 0 && indexValue < tensor.sizes[dim] failed.
/opt/conda/conda-

顺便查了一下网上的关于这个错误的情况,并没有详细的讲解,所以我仍不能明白我的代码里为什么会出现这个报错。
如下是我的scatter操作代码:

idx = x.topk(mask, dim=1) [1]
y = x.scatter(dim=1, mask_idx, 1e-6)

很明显,我用topk从tensor x取出来index,再用这个index对x进行scatter操作。按照逻辑,是绝对不会出现溢出的情况的。 也就是说这个报错正常情况下,不应该出现。

于是我固定seed,重新训练了一下,并把topk取出来的index打印了出来,如下:

这是正常的index

tensor([[[35],
         [30],
         [21]],
         
        [[19],
         [21],
         [26]],

        [[ 2],
         [33],
         [ 0]],

        ...,

        [[35],
         [27],
         [26]],

        [[23],
         [15],
         [22]],

        [[ 0],
         [33],
         [13]]], device='cuda:0')

突然出现了一个溢出的index,然后报错

tensor([[[3615207938365080325],
        [4248763550642949534],
        [3615207938384285133]],

       [[3615207938372244161],
        [3997259572840221815],
        [3615207938369952754]],

       [[4172588079432698792],
        [3615207938209860727],
        [4265188145389882487]],

       ...,

       [[9223372034707292159],
        [9223372034707292159],
        [9223372034707292159]],

       [[9223372034707292159],
        [9223372034707292159],
        [9223372034707292159]],

       [[9223372034707292159],
        [9223372034707292159],
        [9223372034707292159]]], device='cuda:0')
Traceback (most recent call last):
 File "main.py", line 117, in <module>
   run_margin(model, train_loader, optimizer, tracker, train=True, prefix='train', epoch=epoch)
 File "/home/vqa/bottom-up-attention-vqa/train/train_margin.py", line 106, in run_margin
   total_loss.backward()
 File "/home/share/anaconda3/envs/py3_torch_v1.4/lib/python3.7/site-packages/torch/tensor.py", line 195, in backward
   torch.autograd.backward(self, gradient, retain_graph, create_graph)
 File "/home/share/anaconda3/envs/py3_torch_v1.4/lib/python3.7/site-packages/torch/autograd/__init__.py", line 99, in backward
   allow_unreachable=True)  # allow_unreachable flag
RuntimeError: CUDA error: device-side assert triggered

个人分析与解决方法

  • 很明显,这个错误的出现是由于溢出引起的,但是按照我们所写的代码不应该会出现这样的溢出。那么如何解释呢?我个人认为可能是pytorch在训练模型时优化参数后,某些参数出现了异常,特别是对于scatter和gather操作,便很容易出现这个错误。
  • 解决方法:我稍微更改了一下初始化,然后再次训练,这个错误便没有再出现。也就是说它的确是由于优化参数异常导致的。
  • future work:但是如果要从根本上解决它,还是等待pytorch的更新吧。。。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值