安装tesseract
OCR,即Optical Character Recognition,光学字符识别,是指通过扫描字符,然后通过其形状将其翻译成电子文本的过程。对于图形验证码来说,它们都是一些不规则的字符,这些字符确实是由字符稍加扭曲变换得到的内容。
tesseract下载地址:
https://digi.bib.uni-mannheim.de/tesseract/
进入下载页面,可以看到有各种.exe文件的下载列表,这里可以选择最新下载5.0版本。
其中文件名中带有dev的为开发版本,不带dev的为稳定版本,可以选择下载不带dev的版本,例如可以选择下载箭头指向的3.05exe。
下载完成后双击,此时会出现如下图所示的页面。
此时可以勾选Additional language data(download)选项来安装OCR识别支持的语言包,这样OCR便可以识别多国语言。然后一路点击Next按钮即可。
接下来,为了在python代码中使用tesseract功能,
tesserocr 下载地址:https://github.com/simonflueckiger/tesserocr-windows_build/releases
所以我们这里选择下载 tesserocr v2.3.1 和 tesseract 3.05.02。
安装 tesseract 可以比较简单,我们介绍一下关于 tesserocr 的安装过程。
比如说:
把下载下来的 tesserocr 安装包放在 python 安装路径里,在该目录下打开 dos 窗口。
运行 pip3 install tesserocr-2.3.1-cp37-cp37m-win_amd64.whl 即可成功。
2、配置环境变量
为了在全局使用方便,比如安装路径为D:\Program Files (x86)\Tesseract-OCR,将该路径添加到环境变量的path中
3.代码案例
以中国知网的注册页面为例,我们常被要求输入这类简单的字母组成,背景含很多杂线的验证码,如下图所示:
我们对验证码另存为到本地代码所在目录,取名:test.png.
下图是直接用对应模块识别的代码示例:
1 2 3 4 5 6 |
|
原始图片尺寸较小,极少情况下如果无法正常识别,可以借助图片处理工具PIL模块进行图片等比例放大后保存。此例中直接运行上述代码,结果为“VHIHI”,即使是肉眼可见较为清晰的验证码,如果图片未经处理直接交由tesserocr解析,也可能识别率很低。
通常情况下,我们还需要做些额外的图片处理,如转灰度图,二值化等。
利用Image对应的convert()方法传参L,即可将图片转为灰度图。
image=image.convert('L')
image.show()
传入1即可完成二值化,如下:
image=image.convert('1')
image.show()
当然我们更多时候需要根据图片的实际情况指定二值化的阈值,比如我们将阈值设定为80,先转灰度图,再二值化,代码如下:
import tesserocr
from PIL import Image
image=Image.open('test.png')
image=image.convert("L")
threshold=80
table=[]
for i in range(256):
if i <threshold:
table.append(0)
else:
table.append(1)
image=image.point(table,'1')
image.show()
print(tesserocr.image_to_text(image))
观察到处理后图片如右:
尽管图片已经转为灰度图,且过滤了大部分杂线,但是图片关键像素丢失严重,识别结果自然也不尽如人意,结果:“VH.”。
此时我们根据图片的实际情况,人为调整程序中预设的阈值到130,再观察:,这次的图片转换效果显著,我们再次查看识别结果,“VHRU”,与肉眼观察到的别无二致,合乎要求。
可见验证码的识别除了用好识别模块,还需要在必要时引入PIL(图片处理模块)进行图片预处理,预处理过程中的阈值等设定也存有技巧,不同的参数设定,会完全影响最终的识别率。