最近正在看《Spark大数据处理:技术、应用与性能优化》这本书,然后对于最后一章的编程实战比较感兴趣。但是上面写的算法个人觉得还不是很简洁,无法体现出scala的优点,所以稍作了一些修改,仅供参考。
设计思路
首先统计WordCount的词频,将数据转化为(词,词频)的数据对,第二个阶段采用分
治的思想,求出RDD每个分区的Top K,最后将每个分区的Top K结果合并以产生新的集
合,在集合中统计出Top K的结果。 每个分区由于存储在单机的,所以可以采用单机求Top
K的方式。 本例采用堆的方式。 也可以直接维护一个含K个元素的数组,感兴趣的读者可以
参考其他资料了解堆的实现。
代码实现:
import org.apache.spark.{SparkConf, SparkContext}
object TopK {
def main(arg: Array[String]):Unit={
//创建spark
val conf = new SparkConf().setAppName("dcd").setMaster("local")
val sc = new SparkContext(conf)
//读取数据
val dataRDD = sc.textFile("F://wordcount.txt")
.flatMap(_.split(" "))
.map(x => (x, 1))
.reduceByKey((a, b) => (a+b))
//K,V 值反转,并取出前三位数据
val topRDD = dataRDD.map{
case(key, value) => (value, key)
}.sortByKey().top(3).foreach(x =>println(x._2+"-->"+x._1))
sc.stop()
}
}