spark编程实战(一) —— Top K

最近正在看《Spark大数据处理:技术、应用与性能优化》这本书,然后对于最后一章的编程实战比较感兴趣。但是上面写的算法个人觉得还不是很简洁,无法体现出scala的优点,所以稍作了一些修改,仅供参考。

设计思路
首先统计WordCount的词频,将数据转化为(词,词频)的数据对,第二个阶段采用分
治的思想,求出RDD每个分区的Top K,最后将每个分区的Top K结果合并以产生新的集
合,在集合中统计出Top K的结果。 每个分区由于存储在单机的,所以可以采用单机求Top
K的方式。 本例采用堆的方式。 也可以直接维护一个含K个元素的数组,感兴趣的读者可以
参考其他资料了解堆的实现。

代码实现:

import org.apache.spark.{SparkConf, SparkContext}

object TopK {

  def main(arg: Array[String]):Unit={
  	//创建spark
    val conf = new SparkConf().setAppName("dcd").setMaster("local")
    val sc = new SparkContext(conf)
	//读取数据
    val dataRDD = sc.textFile("F://wordcount.txt")
      .flatMap(_.split(" "))
      .map(x => (x, 1))
      .reduceByKey((a, b) => (a+b))
	//K,V 值反转,并取出前三位数据
    val topRDD = dataRDD.map{
      case(key, value) => (value, key)
    }.sortByKey().top(3).foreach(x =>println(x._2+"-->"+x._1))
    sc.stop()
  }

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BigCabbageFy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值