一年标星翻倍,它凭什么成为GitHub最活跃大数据项目之一?

‍大数据文摘出品

 

2015年,阿里搜索算法团队遇到了一个问题。

 

整个淘宝和天猫的商品都需要实时更新到在线的搜索和推荐引擎中,以及要根据用户在在线行为进行实时个性化的搜索排序和推荐。

 

在这样挑战的业务需求大背景下,阿里搜索团队迫切需要找到一个能承受巨大计算量并且实时化的计算引擎

 

通过综合多方面因素的权衡和判断,阿里最终选择了Flink作为实时计算引擎。

 

之后也正如我们所见,阿里集团顶住了包括双十一、618等全年不断的大大小小促销活动。

 

作为一个14年才进入Apache的年轻项目,当时的Flink是如何吸引了阿里搜索团队的注意的呢?

 

阿里巴巴资深技术专家,实时计算负责人,也是Flink中文社区发起人王峰 (莫问)告诉我们,团队首先看中的是Flink的架构设计,尤其是作为一个纯流式思想来做大数据处理,不仅可以基于Kappa结构来做流式数据处理,还可以基于流为核心做批流融合的计算能力。

 

也正因如此,作为备受瞩目的新一代开源大数据计算引擎,Flink项目已成为Apache基金会和GitHub最为活跃的项目之一。在去年年底Flink Forward Asia 2019上透露,仅仅是2019年一年的时间,Flink在GitHub上的star数量就翻了一倍,贡献者数量也呈现出持续增长的态势

 

为了让更多技术从业者了解Flink,Apache Flink Committer执笔,四位PMC成员审核,将Flink 9大技术版块详细拆分,突出重点内容并搭配全面的学习素材。

 

看完这份知识图谱,才算真的搞懂Flink!

 

▽ Flink 知识图谱概览 ▽

 

点击“阅读原文”扫描文末二维码报名《开源Flink极客训练营》并加入配套钉钉群,即可马上下载高清版知识图谱,知识图谱PDF版本内含大量补充链接,一键点击即可查看相关扩展素材!

 

 

各版块知识点详解

  • Streaming Processing Concepts(common concepts for stream processing)

             

  • Architecture

             

  • State Management

             

  • DataStream

       

     

  • Libraries

             

  • Table API & SQL

              

 

  • Deployment and Operations

             

  • Debugging and Monitoring

             

  • Ecosystem

             

  • Use Cases

       

 

重磅福利:阿里大数据训练营重磅开启!

 

不过,一个人恶补“图谱”容易半途而废,配合这份知识图谱,文摘菌在这里也安利一波阿里下周开营的《开源技术Flink极客训练营》0基础也能入门,7次课即刻快速上手

 

课程目录如下👇

               

 

更重要的是,课程现在报名免费,名额有限,先到先得哦!

 

 

除了Flink,这次训练营还有8大课程供你挑选,从第一期实时计算Flink开始,到离线和实时一体化的数仓MaxComputeHologres,也包括开源大数据的全家桶,EMR、ElasticSearch,Flink,以及灵活的机器学习平台PAI和数据综合治理平台DataWorks

 

每个训练营的课程时间3-7天不等,线上视频教学,总共超过40节课,覆盖大数据领域方方面面。

 

无论是你对数仓、数据湖、大数据建模,还是机器学习、搜索引擎以及其他的数据智能各种应用感兴趣,总会有一款适合你的训练营内容。

 

“大数据文摘”作为“九营齐开”计划的合作媒体,为读者们争取到了免费的参与名额,与行业一线团队和技术专家面对面交流。

 

除了直播课程和实战平台,每期训练营出品人将围绕某一核心技术及训练营直播课程规划课外阅读资料,提供从入门到上手的全套学习教材,保障实操演示与扩展阅读同步进行,让您免于“想自学没资料想实操没人教”的各种烦恼。

 

“阅读原文”立刻报名,你可以选择一个或者多个参与,报名免费,参与名额有限,文摘菌只能帮你到这里了!

 

最后,Flink社区知识图谱免费下载方式也来啦~点击“阅读原文”扫描海报二维码,报名《开源Flink极客训练营》,并加入配套钉钉群,还有直播课程详解知识图谱的正确打开方式,让你一图在手,学好Flink不用愁!

 

知识图谱作者介绍:

程鹤群(军长),Apache Flink Committer,阿里巴巴技术专家,2015年4月加入阿里巴巴,从事主搜离线相关开发。2016年开始参与Flink SQL相关的研发。2018年开始核心参与Flink Table API相关的研发。

项目一Spark离线处理本项目来源于企业级电商网站的大数据统计分析平台,该平台以 Spark 框架为核心,对电商网站的日志进行离线和实时分析。 该大数据分析平台对电商网站的各种用户行为(访问行为、购物行为、广告点击行为等)进行分析,根据平台统计出来的数据,辅助公司中的 PM(产品经理)、数据分析师以及管理人员分析现有产品的情况,并根据用户行为分析结果持续改进产品的设计,以及调整公司的战略和业务。最终达到用大数据技术来帮助提升公司的业绩、营业额以及市场占有率的目标。 本项目使用了 Spark 技术生态栈中最常用的三个技术框架,Spark Core、Spark SQL 和 Spark Streaming,进行离线计算和实时计算业务模块的开发。实现了包括用户访问 session 分析、页面单跳转化率统计、热门商品离线统计、广告流量实时统计 4 个业务模块。通过合理的将实际业务模块进行技术整合与改造,该项目几乎完全涵盖了 Spark Core、Spark SQL 和 Spark Streaming 这三个技术框架中大部分的功能点、知识点,学员对于 Spark 技术框架的理解将会在本项目中得到很大的提高。 项目二Spark实时处理项目简介对于实时性要求高的应用,如用户即时详单查询,业务量监控等,需要应用实时处理架构项目场景对于实时要求高的应用、有对数据进行实时展示和查询需求时项目技术分别使用canal和kafka搭建各自针对业务数据库和用户行为数据的实时数据采集系统,使用SparkStreaming搭建高吞吐的数据实时处理模块,选用ES作为最终的实时数据处理结果的存储位置,并从中获取数据进行展示,进一步降低响应时间。 
要用Python实现所有算法,可以利用开源社区GitHub上星标达到15w的项目来作为学习和参考的资源。以下是一些步骤和方法: 1. 在GitHub上搜索并选择合适的算法项目。可以选择一些受欢迎的开源项目,如scikit-learn、numpy、pandas等,它们提供了丰富的算法实现。 2. 克隆或下载所选项目的源代码到本地计算机。 3. 使用Python的集成开发环境(IDE)如PyCharm或Jupyter Notebook打开所下载的代码。 4. 学习项目的结构和功能,了解其实现算法的相关代码。 5. 根据需求选择你想要实现的具体算法,以参考项目中已有的实现为基础进行修改或编写新的代码。 6. 阅读项目中的文档和注释,以便更好地理解算法的实现细节。 7. 学习项目中的测试用例和示例代码,通过运行这些示例代码来验证你自己编写的算法的正确性。 8. 根据需要可以参考相关的数据结构和算法书籍,如《算法导论》、《Python算法教程》等,深入学习和掌握算法的原理和细节。 9. 不断实践和练习,通过解决各种算法问题和挑战来提升自己的实现能力和理解水平。 10. 将自己编写的算法代码保存并进行版本控制,可以使用GitHub来管理和分享自己的项目。 总之,要用Python实现所有算法,需要通过学习和参考开源项目来获取实现的代码,理解和掌握算法的原理和细节,并通过实践和练习不断提升自己的编程能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值