DeepMind发布多智能体协作最新评估方法α-Rank,登上Nature

DeepMind推出了一种名为α-Rank的新方法,用于评估多智能体的协作和竞争。该方法基于动态博弈理论,解决了以往评估指标在大规模多智能体交互中的局限性,能确保排名的唯一性和可计算性。α-Rank通过分析智能体之间的交互,形成种群动态系统,以马尔可夫-Conley Chains为基础,提供了对智能体优势和弱点的深入理解。已在AlphaGo、AlphaZero等游戏中得到应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大数据文摘出品

来源:Nature

编译:魏子敏、宁静

 

在开发通用人工智能的过程中,训练和评估算法同样重要。

 

评估指标不仅仅在培训结束时发挥作用,并且也是整个培训过程中智能体进化的关键驱动因素。

 

错误的排序和不合理的限制可能会让AI自行进化出奇怪的“心眼”。在之前我们的一篇报道中就总结了错误的评估方式导致的AI“钻空子”训练法,比如在让AI玩俄罗斯方块的时候,发现最佳完成任务的方式是直接暂停游戏;在玩井字棋的时候,AI发现它如果做出奇怪的步骤,对手会非常崩溃。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值