### 使用 WRF 输出文件 (wrfout) 进行气象数据可视化绘图
#### 数据读取与预处理
WRF 输出文件通常是以 NetCDF 格式存储的,因此可以利用 Python 中的 `netCDF4` 库来加载这些文件。为了进一步简化操作,还可以借助专门用于处理 WRF 数据的工具包 `wrf-python`[^2]。以下是基本流程:
1. **安装必要的库**
需要先确保已安装以下库:`netCDF4`, `matplotlib`, `cartopy`, 和 `wrf-python`。
```bash
pip install netCDF4 matplotlib cartopy wrf-python numpy pandas scipy
```
2. **加载 WRF 输出文件**
利用 `wrf-python` 提供的功能可以直接提取变量并进行计算。
```python
from netCDF4 import Dataset
from wrf import getvar, to_np, latlon_coords, cartopy_xlim, cartopy_ylim
# 打开 WRF 输出文件
ncfile = Dataset("wrfout_d01_YYYY-MM-DD_HH:MM:SS") # 替换为实际路径和时间戳
```
3. **提取所需变量**
可以通过 `getvar()` 函数轻松获取常见的气象变量(如温度、风速等),并将它们转换为 NumPy 数组以便后续处理。
```python
temp = getvar(ncfile, "temp", units="degC") # 获取摄氏度下的气温
u_wind = getvar(ncfile, "ua") # 获取东向风分量
v_wind = getvar(ncfile, "va") # 获取北向风分量
slp = getvar(ncfile, "slp") # 获取海平面气压
lats, lons = latlon_coords(temp) # 获取经纬度坐标
```
---
#### 绘制常见类型的气象图表
##### 折线图绘制
对于随时间变化的单点或多站点序列数据,可采用折线图展示其趋势。
```python
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 6))
time_series = to_np(getvar(ncfile, "Times")) # 时间维度
temperature_series = to_np(temp[:, 0, 0]) # 假设选取第一个网格点作为示例
plt.plot(time_series, temperature_series, label="Temperature at Grid Point (0, 0)")
plt.xlabel("Time")
plt.ylabel("Temperature ($^\circ$C)")
plt.title("Temperature Time Series")
plt.legend()
plt.show()
```
##### 地理分布图绘制
当需要显示某一时刻的空间分布特征时,可以选择填色图或等值线图,并叠加地理底图。
```python
import cartopy.crs as ccrs
from cartopy.feature import NaturalEarthFeature
fig, ax = plt.subplots(figsize=(10, 7), subplot_kw={"projection": ccrs.PlateCarree()})
# 添加自然地球背景
ax.add_feature(NaturalEarthFeature('physical', 'coastline', '50m'), edgecolor='black')
# 转换为二维数组并填充颜色
contour_levels = np.arange(950, 1050, 2)
cs = ax.contourf(to_np(lons), to_np(lats), to_np(slp), levels=contour_levels,
cmap=get_cmap("coolwarm"), transform=ccrs.PlateCarree())
# 设置范围
xlim = cartopy_xlim(slp)
ylim = cartopy_ylim(slp)
ax.set_extent([*xlim, *ylim], crs=ccrs.PlateCarree())
cbar = fig.colorbar(cs, orientation="vertical", pad=.03, aspect=25, shrink=.8)
cbar.ax.tick_params(labelsize=10)
plt.title("Sea Level Pressure Distribution")
plt.show()
```
##### 流场矢量图绘制
针对风场数据,可以通过箭头表示方向和强度。
```python
skip = 10 # 控制稀疏程度
u_plot = to_np(u_wind)[::skip, ::skip]
v_plot = to_np(v_wind)[::skip, ::skip]
fig, ax = plt.subplots(figsize=(10, 7), subplot_kw={"projection": ccrs.PlateCarree()})
ax.quiver(to_np(lons[::skip, ::skip]), to_np(lats[::skip, ::skip]),
u_plot, v_plot, scale=500, color="blue",
regrid_shape=20, transform=ccrs.PlateCarree())
ax.coastlines()
plt.title("Wind Field Vector Plot")
plt.show()
```
---
#### 总结
以上方法展示了如何使用 WRF 的输出文件 (`wrfout`) 来实现不同形式的数据可视化。具体应用取决于研究目标以及所关注的物理参数。此外,在更复杂的场景下可能还需要引入额外的后处理技术或者优化图形表现效果[^2]。