Bloom Filter

Bloom filter

布隆过滤器(英语:Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。Bloom filter可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。

基本概念

如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间越来越大。同时检索速度也越来越慢,上述三种结构的检索时间复杂度分别为 O(n),O(logn),O(n/k)

布隆过滤器的原理是,当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。这就是布隆过滤器的基本思想。

Bloom Filter 是快速但是不精确的。存在false positive,但是绝对不会false negative。如果一个元素在Bloom Filter中,那么返回的一定为真;反之,也可能返回为真。

优点

  • 相比于其它的数据结构,布隆过滤器在空间和时间方面都有巨大的优势。布隆过滤器存储空间和插入/查询时间都是常数O(k)

  • 散列函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。

  • 布隆过滤器可以表示全集,其它任何数据结构都不能.

缺点

  • 布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。

  • 另外,一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位数组变成整数数组,每插入一个元素相应的计数器加1, 这样删除元素时将计数器减掉就可以了。然而要保证安全地删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面。这一点单凭这个过滤器是无法保证的。两个Bloom Filter也无法合并成一个。

False Positive Rate

k代表Bloom Filter使用的散列函数个数(即元素会被映射到几个位上,n表示Bloom Filter中元素个数,N代表Bloom Filter的大小。设p为Bloom Filter中某一位为1的概率,那么有一新元素x,

P[x is reported to be in the set]=pk

pn·kN

n次插入之后, BF中 某一位还是0的概率为:

(11N)nk=(1e)nkN

则某一位为1的概率为:
1(1e)nkN

则k位都是1,也就是误报概率为
(1(1e)nkN)k

阅读更多
个人分类: 数据结构
上一篇复杂度分析
下一篇优先队列(Priority Queue)
想对作者说点什么? 我来说一句

bloom filter

2010年12月29日 68KB 下载

没有更多推荐了,返回首页

关闭
关闭