Vintage
Vintage
分析通过将不同时期放款的资产按照账龄进行分组,并跟踪其在每个账龄阶段的表现,为评估资产质量和风控策略效果提供了有力的工具。
- 原理:以放款月份为维度,观察相同账龄下不同批次放款的资产质量表现。
- 计算方法:首先确定账龄的计算起点(通常是放款日),然后按照每个月进行划分。例如,对于 1 月份放款的资产,在 2 月份时账龄为 1 个月,3 月份时账龄为 2 个月,以此类推。分别计算每个账龄阶段的逾期率、不良率等指标。
- 作用:
- 评估风控策略的稳定性:如果不同批次放款的资产在相同账龄下表现相似,说明风控策略在不同时间点的效果较为稳定。
- 预测未来资产质量:通过观察历史
vintage
曲线的趋势,可以对新放款资产在未来的质量表现进行一定的预测。 - 优化风控策略:如果发现某些批次的资产在特定账龄表现异常,可以深入分析原因,进而优化风控策略。
在报表体系中,Vintage
报表通常会呈现不同放款月份的资产在各个账龄阶段的详细指标,如逾期金额、逾期率、不良金额、不良率等。通过图表的形式,直观展示资产质量的变化趋势。
以下是一些可能的 Vintage 报表示例:
Vintage 报表 - 消费贷款
放款月份 | 账龄(月) | 逾期 30 天以上贷款金额 | 逾期 30 天以上贷款占比 | 不良贷款金额 | 不良贷款占比 |
---|---|---|---|---|---|
2024 年 1 月 | 1 | 100,000 | 2.0% | 50,000 | 1.0% |
2 | 120,000 | 2.4% | 60,000 | 1.2% | |
3 | 150,000 | 3.0% | 80,000 | 1.6% | |
4 | 180,000 | 3.6% | 100,000 | 2.0% | |
5 | 200,000 | 4.0% | 120,000 | 2.4% |
2024 年 2 月 | 1 | 80,000 | 1.6% | 40,000 | 0.8%
| 2 | 100,000 | 2.0% | 50,000 | 1.0%
| 3 | 120,000 | 2.4% | 60,000 | 1.2%
| 4 | 140,000 | 2.8% | 70,000 | 1.4%
2024 年 3 月 | 1 | 90,000 | 1.8% | 45,000 | 0.9%
| 2 | 110,000 | 2.2% | 55,000 | 1.1%
| 3 | 130,000 | 2.6% | 65,000 | 1.3%
Vintage 报表 - 信用卡贷款
放款月份 | 账龄(月) | 逾期 60 天以上贷款金额 | 逾期 60 天以上贷款占比 | 核销贷款金额 | 核销贷款占比 |
---|---|---|---|---|---|
2023 年 9 月 | 1 | 500,000 | 1.5% | 200,000 | 0.6% |
2 | 600,000 | 1.8% | 250,000 | 0.75% | |
3 | 700,000 | 2.1% | 300,000 | 0.9% | |
4 | 800,000 | 2.4% | 350,000 | 1.05% | |
5 | 900,000 | 2.7% | 400,000 | 1.2% |
2023 年 10 月 | 1 | 450,000 | 1.35% | 180,000 | 0.54%
| 2 | 550,000 | 1.65% | 220,000 | 0.66%
| 3 | 650,000 | 1.95% | 270,000 | 0.81%
2023 年 11 月 | 1 | 480,000 | 1.44% | 190,000 | 0.57%
| 2 | 580,000 | 1.74% | 240,000 | 0.72%
Roll Rate(滚动率)
Roll Rate
主要用于观察客户在不同逾期状态之间的转移情况。
- 原理:计算在一个特定时间段内,客户从一个逾期状态转移到另一个逾期状态的比例。
- 计算方法:假设我们关注从逾期 1 个月(M1)到逾期 2 个月(M2)的滚动率。在某个月期末处于 M1 的客户数量为 A,在下个月末这些客户中转移到 M2 的数量为 B,那么从 M1 到 M2 的滚动率就是 B / A * 100%。
- 作用:
- 监测逾期恶化趋势:通过连续观察滚动率,可以及时发现逾期情况是否在恶化。
- 预测坏账损失:根据滚动率的变化,结合逾期金额,可以对未来可能的坏账损失进行预测。
- 调整催收策略:如果发现从某个逾期阶段到更严重逾期阶段的滚动率较高,可能需要加强相应的催收措施。
在报表体系中,Roll Rate
报表通常会以矩阵的形式呈现不同逾期状态之间的转移比例,同时可能会附上趋势图表,展示滚动率的变化情况。
以下是一些可能的 Roll Rate 报表示例:
Roll Rate 报表 - 个人贷款
起始逾期阶段 | 结束逾期阶段 | Roll Rate(%) |
---|---|---|
M1 | M2 | 25.0 |
M1 | M3 | 10.0 |
M2 | M3 | 40.0 |
M2 | 已结清 | 20.0 |
M3 | 已结清 | 15.0 |
Roll Rate 报表 - 信用卡
起始逾期阶段 | 结束逾期阶段 | Roll Rate(%) |
---|---|---|
1-30 天 | 31-60 天 | 18.0 |
1-30 天 | 61-90 天 | 8.0 |
31-60 天 | 61-90 天 | 30.0 |
31-60 天 | 已结清 | 12.0 |
61-90 天 | 已结清 | 5.0 |
Roll Rate 报表 - 企业贷款
起始逾期阶段 | 结束逾期阶段 | Roll Rate(%) |
---|---|---|
轻度逾期 | 中度逾期 | 22.0 |
轻度逾期 | 重度逾期 | 5.0 |
中度逾期 | 重度逾期 | 35.0 |
中度逾期 | 已结清 | 10.0 |
重度逾期 | 已结清 | 3.0 |
迁移率
迁移率与 Roll Rate
相似,也是用于衡量客户在不同风险等级或逾期状态之间的变化。
- 原理:类似于
Roll Rate
,但更侧重于风险等级的变化。 - 计算方法:例如,从正常类客户迁移到关注类客户的数量为 C,期初正常类客户数量为 D,那么从正常到关注的迁移率就是 C / D * 100%。
- 作用:
- 提前预警风险:能够在客户风险等级恶化的早期阶段进行识别和预警。
- 优化风险管理:根据迁移率的情况,调整风险管理策略,如调整授信额度、加强监控等。
- 资源分配决策:帮助决定在不同风险等级的客户上分配催收、管理等资源的优先级。
在报表体系中,迁移率报表会清晰地展示各个风险等级之间的迁移比例,以及相应的趋势分析,为管理层提供决策支持。
例如,一家金融机构通过 Vintage
分析发现,最近几个月放款的资产在账龄 3 个月时的逾期率明显高于以往同期水平,这可能提示风控策略在近期有所放松或者市场环境发生了变化。通过 Roll Rate
分析发现,从 M1 到 M2 的滚动率连续几个月上升,说明逾期情况在加速恶化,需要加大催收力度。而迁移率分析显示,从关注类迁移到次级类的比例有所增加,提示需要对关注类客户加强管理和监控。
以下是为您提供的迁移率报表示例:
迁移率报表 - 消费信贷
起始风险等级 | 结束风险等级 | 迁移率(%) |
---|---|---|
正常 | 关注 | 5.0 |
正常 | 次级 | 1.0 |
正常 | 可疑 | 0.5 |
正常 | 损失 | 0.1 |
关注 | 次级 | 15.0 |
关注 | 可疑 | 5.0 |
关注 | 损失 | 1.0 |
次级 | 可疑 | 30.0 |
次级 | 损失 | 10.0 |
可疑 | 损失 | 50.0 |
迁移率报表 - 小微企业贷款
起始风险等级 | 结束风险等级 | 迁移率(%) |
---|---|---|
低风险 | 中风险 | 3.0 |
低风险 | 高风险 | 0.5 |
中风险 | 高风险 | 10.0 |
中风险 | 违约 | 2.0 |
高风险 | 违约 | 20.0 |
迁移率报表 - 信用卡业务
起始逾期阶段 | 结束逾期阶段 | 迁移率(%) |
---|---|---|
未逾期 | 逾期 1-30 天 | 2.0 |
未逾期 | 逾期 31-60 天 | 0.5 |
逾期 1-30 天 | 逾期 31-60 天 | 10.0 |
逾期 1-30 天 | 逾期 61-90 天 | 2.0 |
逾期 31-60 天 | 逾期 61-90 天 | 20.0 |
逾期 31-60 天 | 坏账 | 5.0 |
逾期 61-90 天 | 坏账 | 30.0 |