Description
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node’s key.
- The right subtree of a node contains only nodes with keys greater than the node’s key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input:
2
/
1 3
Output: true
Example 2:
5
/
1 4
/
3 6
Output: false
Explanation: The input is: [5,1,4,null,null,3,6]. The root node’s value
is 5 but its right child’s value is 4.
Problem URL
Solution
判断一颗树是否是二叉搜索树。二叉搜索树的每个节点的左孩子的值小于节点值,右孩子的值大于节点值。对于每棵子树都适用。
一开始考虑直接递归,发现如果子树子节点比根大的testcase会有问题。然后使用一个helper,用两个long分别存储下一次递归的值的范围,方可正常递归。之所以用long是因为特殊情况2147483647,也就是INT_MAX的存在。判断与最大值相同时返回的是false,无法通过特殊testcase。
Using a helper which stores the max value and min value for each recursion. If the node is null, return true. If the value of this node is equal or out of the range of max value and min value, return fasle. Then calling helper recursively on left subtree and right subtree and return the union of their return value.
Code
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool isValidBST(TreeNode* root) {
return isValidBSTHelper(root, LONG_MAX, LONG_MIN);
}
bool isValidBSTHelper(TreeNode* root, long max, long min){
if (root == NULL)
return true;
if (root->val >= max || root->val <= min)
return false;
return isValidBSTHelper(root->left, root->val, min) && isValidBSTHelper(root->right, max, root->val);
}
};
Time Complexity: O(n)
Space Complexity: O(1)
Review
This problem can also be solved by inorder traversal. Using a stack to store node, it could be used in several Binary Search Tree problem.
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
Stack<TreeNode> stack = new Stack<>();
TreeNode pre = null;
while (root != null || !stack.isEmpty()) {
while (root != null) {
stack.push(root);
root = root.left;
}
root = stack.pop();
if(pre != null && root.val <= pre.val) return false;
pre = root;
root = root.right;
}
return true;
}