- 博客(5)
- 收藏
- 关注
原创 2024-2025年最新YOLO小目标检测改进论文
传统 YOLOv8 的 FPN 融合能力有限,难以保留浅层小目标的空间细节。SOD-YOLOv8 借鉴。传统 CIoU 损失在小目标边界框回归时,对中心点距离和宽高比例的惩罚不够直接,易导致定位偏差。:相比 CIoU,PIoU 对小目标边界框的微小偏移更敏感,定位精度提升约 1.1%~2.6%。:通过融合浅层高分辨率特征与深层语义特征,小目标定位精度提升显著。:动态调整不同通道和空间位置的特征权重,增强小目标特征的表达能力。注意力机制,可以优先处理对小目标重要的特征。在颈部的 C2f 模块中嵌入。
2025-06-08 20:39:23
738
原创 【YOLO小目标改进】YOLOv8s-SOD
针对小目标检测中目标尺寸小、背景复杂等挑战,本文提出SOD-YOLO算法,通过在特征提取网络集成S_C2f_CAFM和SPPF_E模块、设计含SCAM的双向特征金字塔网络并引入D_C2f_MSPA模块,以及采用NWD损失函数,在DOTAv1.0等数据集上实现mAP较YOLOv8提升6.7%-11.9%且参数减少13.9%。
2025-06-08 20:38:23
801
原创 baseline
将两个自定义配置文件复制到 PaddleDetection 框架的对应配置目录中。configs/picodet 是 PicoDet 模型的配置文件夹,ppq.yml 可能包含模型训练参数、网络结构配置等内容configs/datasets 用于存放数据集配置,voc_ppq.yml 可能定义了乒乓球数据集的路径、格式(如 Pascal VOC 标准)、类别信息等# 将当前目录下的 ppq.yml 文件,复制到 PaddleDetection 框架的 configs/picodet 目录!
2025-03-28 16:48:26
638
原创 飞浆PaddleDetection套件
在计算机视觉目标检测、实例分割等任务中,网络结构通常由骨干网络(Backbone)、颈部模块(Neck)和检测头(Head)组成。
2025-03-27 23:34:39
1117
原创 TrackNet V1-V4进阶之路
本文聚焦 TrackNet 系列深度学习框架,该系列旨在解决体育视频中高速物体的跟踪难题。TrackNetV1 基于热图架构,利用多帧输入应对运动模糊和遮挡问题。TrackNetV2 借助 U - Net 跳连接、MIMO 设计及加权交叉熵损失函数提升效率。TrackNetV3 引入背景估计、混合增强和轨迹校正技术,进一步优化跟踪性能。TrackNetV4 则通过运动注意力图与视觉特征融合的创新方式,增强了对高速物体的跟踪能力。关键词:TrackNet;体育分析;目标跟踪;深度学习;运动注意力;轨迹校正。
2025-03-20 16:54:35
918
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人