西门子工业软件(上海)有限公司 张良
- 背景
目前基于统计学的质量SPC统计过程控制已经被越来越多的制造企业所采用,尽管没有日本、美国等发达国家的普及率那么高。SPC统计过程控制是非常完善的质量过程控制方法,各种公式也是非常明确的,并且也有很多著名的制作SPC控制图的软件,比如:Minitab。在西门子QMS质量管理系统中,也有SPC统计分析模块,并且是基于QMS系统中的检测样本的实测数据进行控制图的绘制,比如:X-b,X-r,泊松……等,离线或实时在线绘制等都支持。
SPC控制图的关键意义在于可以对质量趋势进行判断,从而在缺陷产生之前就采取相应措施避免缺陷的产生,进而提高质量效率和水平。但是质量趋势如何判断?判断出有异常其背后真正的原因是什么?进一步而言的SPC的趋势判异规则如何确定?如何优化?针对这些,目前还没有成熟的解决方案。主要趋势判异和根因分析需要跨多系统的大数据分析能力。
本篇文章就针对制造业SPC质量分析控制图的趋势判异和根因分析提出解决方案——基于Mendix的跨多系统质量、制造大数据人工智能分析APP。
- 需求
业内SPC统计过程控制中制图比较容易,只要有样本质检数据,使用Excel也可以制作出SPC质量趋势控制图。但质量趋势判异和根因分析却没有很好的支撑系统或工具,而判异和根因分析才是企业引入SPC的根本诉求。趋势判异和根因分析从本质上需要聚合人、机、料、法、环、测等多个方面进行分析,比如一个零件的某个特性加工出现了质量缺陷,或者可能要出现缺陷,这和加工这个特性时的操作工、机台设备、零件本身、加工方法、测量方法等可能都有关系。而具体是哪些因素导致的,就需要进行详细的分析。
但对于企业而言很难及时的统计出在