cs229-lecture3-学习笔记

局部加权回归(locally weighted regression)

参数化算法:有固定参数来拟合数据的算法
非参数算法:参数变化的算法,例如局部加权回归(LWR)
LWR:选择参数 使拟合最小化
其中
即在距离目标点较近的点将获得较大的权值( 时趋近于1),距离较远的点将获得较小的权值( 时趋近于0),因此每次进行预测(x不同),都需要重新计算所有权值, 称为波长参数(bandwidth p arameter),直观上看其控制了权值随距离增大而下降的速率,其值越小,所得的权值函数(钟型图像)越陡,反之则越平坦。


线性回归模型的概率解释

假设真实房价值与预测值之间相差一个误差项,即 ,误差项 是由多个相互独立的随机变量(包括没有捕获的特征值和随机噪声等)之和,由中心极限定理,可知误差项服从均值为0的正态分布即 ,其概率密度函数

因此在给定参数的房价也是服从正态分布的,即

所以问题变为选择参数 使 最大化,

所以问题等同与选择参数 使
最小化(注意 是正数),
这就是线性模型中选择代价函数 的原因。

logistics 回归(logistics regression)

logistics 回归算法是一种二元分类算法(输出值是个离散的,如只能取两个值0/1),
假设
其假设函数为

其中 一般被称为logistics 函数或sigmoid 函数,

图像特点:当z小于零趋向于负半轴则g(z)趋向于0,当z大于零趋向于正半轴则g(z)趋向于1,与y轴相交于(0,0.5)
所以
合并得

所以


接下来用梯度下降法求 使 最大化,即
(注意是加不是减,因为是最大化)

而梯度和线性回归的几乎一样

所以对所有


weixin295微信小程序选课系统+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值