斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用,美国数学会从1963起专门出版了以《斐波那契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
这个数列从第3项开始,每一项都等于前两项之和。
假设我们编写一小段Python代码来实现斐波那契数列:
fibs = [0,1]
for i in range(8):
fibs.append(fibs[-2]-fibs[-1])
print(fibs)
运行后,fibs会包含斐波那契数列的前10个数字:
[0, 1, -1, 2, -3, 5, -8, 13, -21, 34]
当然,如果想得到任意多个数字,可以加入int(input())来设定数字