Farmer John has purchased a subscription to Good Hooveskeeping magazine for his cows, so they have plenty of material to read while waiting around in the barn during milking sessions. Unfortunately, the latest issue contains a rather inappropriate article on how to cook the perfect steak, which FJ would rather his cows not see (clearly, the magazine is in need of better editorial oversight).
FJ has taken all of the text from the magazine to create the string S of length at most 10^6 characters. From this, he would like to remove occurrences of a substring T to censor the inappropriate content. To do this, Farmer John finds the first occurrence of T in S and deletes it. He then repeats the process again, deleting the first occurrence of T again, continuing until there are no more occurrences of T in S. Note that the deletion of one occurrence might create a new occurrence of T that didn’t exist before.
Please help FJ determine the final contents of S after censoring is complete.
INPUT FORMAT: (file censor.in)
The first line will contain S. The second line will contain T. The length of T will be at most that of S, and all characters of S and T will be lower-case alphabet characters (in the range a..z).
OUTPUT FORMAT: (file censor.out)
The string S after all deletions are complete. It is guaranteed that S will not become empty during the deletion process.
SAMPLE INPUT:
whatthemomooofun
moo
SAMPLE OUTPUT:
whatthefun
[Problem credits: Mark Gordon, 2015]
这道题和铜组的第一题实际上是一模一样的,直接用以前那个方法就可以过的,但是官方说可以用字符串Hash或者是KMP,官方主要介绍了一下用字符串Hash的方法,我就直接把Mark Gordon的代码贴过来了,注释都比较详细.
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <cstdio>
using namespace std;
#define HM 1000000007
#define HA 100000007
#define HB 101
/* Given the hash 'h' of string S, computes the hash of S + 'ch'. */
int hext(int h, int ch) {
return (1ll * h * HA + ch + HB) % HM;
}
int main() {
freopen("censor.in", "r", stdin);
freopen("censor.out", "w", stdout);
/* Read the input strings. */
string S, T;
cin >> S >> T;
/* Compute the hash of T. */
int thsh = 0;
for (int i = 0; i < T.size(); i++) {
thsh = hext(thsh, T[i] - 'a');
}
/* Build the result string one character a time. */
string R;
vector<int> rhsh(1, 0);
vector<int> HAPW(1, 1);
for (int i = 0; i < S.size(); i++) {
/* Update the result string. */
R += S[i];
/* Calculate the hash of the new result string. */
rhsh.push_back(hext(rhsh.back(), S[i] - 'a'));
/* Calculate the next power of HA. */
HAPW.push_back((1ll * HAPW.back() * HA) % HM);
if (R.size() >= T.size()) {
/* Compute the hash of the last |T| characters of R. This is done by subtracting out
* the prefix before the last T characters from the entire hash of R (multiplying by the
* appropriate power of HA). */
int hsub = (1ll * rhsh[R.size() - T.size()] * HAPW[T.size()]) % HM;
int hsh = (HM + rhsh.back() - hsub) % HM;
/* If the end of R and T match truncate the end of R (and associated hash arrays). */
if (hsh == thsh && R.substr(R.size() - T.size()) == T) {
R.resize(R.size() - T.size());
rhsh.resize(rhsh.size() - T.size());
HAPW.resize(HAPW.size() - T.size());
}
}
}
cout << R << endl;
return 0;
}