Python基础⑹
1. is 和 == 的区别
is 比较的是两个实例对象是不是完全相同,它们是不是同一个对象,占用的内存地址是否相同。莱布尼茨说过:“世界上没有两片完全相同的叶子”,这个is正是这样的比较,比较是不是同一片叶子(即比较的id是否相同,这id类似于人的身份证标识)。
== 比较的是两个对象的内容是否相等,即内存地址可以不一样,内容一样就可以了。这里比较的并非是同一片叶子,可能叶子的种类或者脉络相同就可以了。默认会调用对象的 __eq__()方法。
2. encode
python encode() 方法以 encoding 指定的编码格式编码字符串。errors参数可以指定不同的错误处理方案。
语法
encode()方法语法:
str.encode(encoding='UTF-8',errors='strict')
参数
- encoding -- 要使用的编码,如"UTF-8"。
- errors -- 设置不同错误的处理方案。默认为 'strict',意为编码错误引起一个UnicodeError。 其他可能得值有 'ignore', 'replace', 'xmlcharrefreplace', 'backslashreplace' 以及通过 codecs.register_error() 注册的任何值。
返回值
该方法返回编码后的字符串。
实例
以下实例展示了encode()方法的实例:
#!/usr/bin/python str = "this is string example....wow!!!"; print "Encoded String: " + str.encode('base64','strict')
以上实例输出结果如下:
Encoded String: dGhpcyBpcyBzdHJpbmcgZXhhbXBsZS4uLi53b3chISE=
3. join
Python join() 方法用于将序列中的元素以指定的字符连接生成一个新的字符串。
语法
join()方法语法:
str.join(sequence)
参数
- sequence -- 要连接的元素序列。
返回值
返回通过指定字符连接序列中元素后生成的新字符串。
实例
以下实例展示了join()的使用方法:
实例(Python 2.0+)
以上实例输出结果如下:
a-b-c
4. list的删除问题
们直接先给出输出与预期不同的代码
In[28]: a = [1,2,3,4,5,6]
In[29]: for i in a:
...: a.remove(i)
...:
In[30]: a
Out[30]: [2, 4, 6]
- 1
- 2
- 3
- 4
- 5
- 6
在上述for循环中,假设我们删除了index=2的值,原本index=3及之后的值会向前补位,所以在循环中就跳过了原index=3的变量
同理,使用list.pop()函数删除指定元素的时候,也会出现上述情况,如:
In[33]: a = [1,2,3,4,5,6]
In[34]: for index, value in enumerate(a):
...: a.pop(index)
...:
In[35]: a
Out[35]: [2, 4, 6]
- 1
- 2
- 3
- 4
- 5
- 6
如果我们想循环删除列表中的元素,较简单的可用方法有:用一个临时列表保存待删除的元素,在for循环临时列表来删除老列表中的元素;或者直接用剩余元素列表覆盖原列表
5. set(集合)
集合的交集、合集(并集)、差集,了解集合set的这些非常好用的功能前,要先了解一些集合操作符号
简单的演示下差集、交集和合集的概念:
6. 深浅拷贝
定义:
在Python中对象的赋值其实就是对象的引用。当创建一个对象,把它赋值给另一个变量的时候,python并没有拷贝这个对象,只是拷贝了这个对象的引用而已。
浅拷贝:拷贝了最外围的对象本身,内部的元素都只是拷贝了一个引用而已。也就是,把对象复制一遍,但是该对象中引用的其他对象我不复制
深拷贝:外围和内部元素都进行了拷贝对象本身,而不是引用。也就是,把对象复制一遍,并且该对象中引用的其他对象我也复制。
几个术语的解释:
1,变量:是一个系统表的元素,拥有指向对象的连接空间
2,对象:被分配的一块内存,存储其所代表的值
3,引用:是自动形成的从变量到对象的指针
4,注意:类型(int类型,long类型(python3已去除long类型,只剩下int类型的数据))属于对象,不是变量
5,不可变对象:一旦创建就不可修改的对象,包括字符串、元组、数字
6,可变对象:可以修改的对象,包括列表、字典。
应用的范围:
1,切片可以应用于:列表、元组、字符串,但不能应用于字典。
2,深浅拷贝,既可应用序列(列表、元组、字符串),也可应用字典。
深浅拷贝的作用:
1,减少内存的使用
2,以后在做数据的清洗、修改或者入库的时候,对原数据进行复制一份,以防数据修改之后,找不到原数据。
对于不可变对象的深浅拷贝:
不可变对象类型,没有被拷贝的说法,即便是用深拷贝,查看id的话也是一样的,如果对其重新赋值,也只是新创建一个对象,替换掉旧的而已。
一句话就是,不可变类型,不管是深拷贝还是浅拷贝,地址值和拷贝后的值都是一样的。
a=(1,2,3)
print("=====第一种=号浅拷贝=====")
b=a
print(a)
print(b)
print(id(a))
print(id(b))
print("=====另一种copy浅拷贝===")
b=copy.copy(a)
print(a)
print(b)
print(id(a))
print(id(b))
print("=====深拷贝=====")
b=copy.deepcopy(a)
print(a)
print(b)
print(id(a))
print(id(b))
# 结果如下:
=====浅拷贝=====
(1, 2, 3)
(1, 2, 3)
2814522335952
2814522335952
=====另一种浅拷贝===
(1, 2, 3)
(1, 2, 3)
2814522335952
2814522335952
=====深拷贝=====
(1, 2, 3)
(1, 2, 3)
2814522335952
2814522335952
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
对于可变对象深浅拷贝:
=浅拷贝:值相等,地址相等
copy浅拷贝:值相等,地址不相等
deepcopy深拷贝:值相等,地址不相等
a=[1,2,3]
print("=====第一种=号浅拷贝=====")
b=a
print(a)
print(b)
print(id(a))
print(id(b))
print("=====另一种copy浅拷贝===")
b=copy.copy(a)
print(a)
print(b)
print(id(a))
print(id(b))
print("=====深拷贝=====")
b=copy.deepcopy(a)
print(a)
print(b)
print(id(a))
print(id(b))
#结果如下:
=====浅拷贝=====
[1, 2, 3]
[1, 2, 3]
2007696321544
2007696321544
=====另一种copy浅拷贝===
[1, 2, 3]
[1, 2, 3]
2007696321544
2007695909960
=====深拷贝=====
[1, 2, 3]
[1, 2, 3]
2007696321544
2007696319560
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
总结:
1,深浅拷贝都是对源对象的复制,占用不同的内存空间。
2,不可变类型的对象,对于深浅拷贝毫无影响,最终的地址值和值都是相等的。
3,可变类型:
=浅拷贝: 值相等,地址相等
copy浅拷贝:值相等,地址不相等
deepcopy深拷贝:值相等,地址不相等