使用Python计算DataFrame中特定数据列的中位数绝对偏差(Median Absolute Deviation,简称MAD)是一项常见的统计任务

96 篇文章 18 订阅 ¥59.90 ¥99.00
本文介绍了如何使用Python的pandas库计算DataFrame中特定列的中位数绝对偏差(MAD)。首先确保安装了pandas和numpy库,然后创建一个示例DataFrame,接着定义一个函数计算MAD,最后应用该函数到DataFrame的列上并输出结果。
摘要由CSDN通过智能技术生成

使用Python计算DataFrame中特定数据列的中位数绝对偏差(Median Absolute Deviation,简称MAD)是一项常见的统计任务。在本文中,我们将介绍如何使用statsmodels包中的robust.mad函数和pandasapply函数来完成这个任务。

首先,让我们安装所需的库。确保已经安装了statsmodelspandas库,可以使用以下命令进行安装:

pip install statsmodels pandas

安装完成后,我们可以开始编写代码。首先,导入所需的库:

import pandas as pd
import statsmodels.api as sm

接下来,创建一个包含数据的DataFrame。假

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值