4563: [Haoi2016]放棋子
Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 281 Solved: 179
[Submit][Status][Discuss]
Description
给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在
这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行只有一枚棋子,每列只有一枚棋子
的限制,求有多少种方案。
Input
第一行一个N,接下来一个N*N的矩阵。N<=200,0表示没有障碍,1表示有障碍,输入格式参考样例
Output
一个整数,即合法的方案数。
Sample Input
2
0 1
1 0
0 1
1 0
Sample Output
1
这个障碍图给的毫无卵用,由错排公式直接得结果
重要的是不要跳进高精度的坑
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std;
struct big
{int a[1000];}f[250];
int n;
big operator + (big b,big c)
{
big d;
int temp=0;
d.a[0]=max(b.a[0],c.a[0]);
for(int i=1;i<=d.a[0];i++)
{
d.a[i]=c.a[i]+b.a[i]+temp;
temp=d.a[i]/10;d.a[i]=d.a[i]%10;
}
while(temp)d.a[++d.a[0]]=temp%10,temp/=10;
return d;
}
big operator * (int t,big c)
{
int temp=0;
for(int i=1;i<=c.a[0];i++)
c.a[i]*=t;
for(int i=1;i<=c.a[0];i++)
c.a[i]+=temp,temp=c.a[i]/10,c.a[i]%=10;
while(temp)c.a[++c.a[0]]=temp%10,temp/=10;
return c;
}
int main()
{
scanf("%d",&n);
f[1].a[1]=0;f[1].a[0]=f[2].a[1]=f[2].a[0]=1;
for(int i=3;i<=n;i++)
f[i]=(i-1)*(f[i-1]+f[i-2]);
f[1].a[1]=1;
for(int i=f[n].a[0];i>=1;i--)
printf("%d",f[n].a[i]);
}