BZOJ 4563: [Haoi2016]放棋子

4563: [Haoi2016]放棋子

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 281  Solved: 179
[Submit][Status][Discuss]

Description

给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在
这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足每行只有一枚棋子,每列只有一枚棋子
的限制,求有多少种方案。

Input

第一行一个N,接下来一个N*N的矩阵。N<=200,0表示没有障碍,1表示有障碍,输入格式参考样例

Output

一个整数,即合法的方案数。

Sample Input

2
0 1
1 0

Sample Output

1


这个障碍图给的毫无卵用,由错排公式直接得结果

重要的是不要跳进高精度的坑


#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
using namespace std;
struct big
{int a[1000];}f[250];
int n;
big operator + (big b,big c)
{
    big d;
    int temp=0;
    d.a[0]=max(b.a[0],c.a[0]);
    for(int i=1;i<=d.a[0];i++)
    {
        d.a[i]=c.a[i]+b.a[i]+temp;
        temp=d.a[i]/10;d.a[i]=d.a[i]%10;
    }
    while(temp)d.a[++d.a[0]]=temp%10,temp/=10;
    return d;
}
big operator * (int t,big c)
{
    int temp=0;
    for(int i=1;i<=c.a[0];i++)
    c.a[i]*=t;
    for(int i=1;i<=c.a[0];i++)
    c.a[i]+=temp,temp=c.a[i]/10,c.a[i]%=10;
    while(temp)c.a[++c.a[0]]=temp%10,temp/=10;
    return c;
}
int main()
{
    scanf("%d",&n);
    f[1].a[1]=0;f[1].a[0]=f[2].a[1]=f[2].a[0]=1;
    for(int i=3;i<=n;i++)
    f[i]=(i-1)*(f[i-1]+f[i-2]);
    f[1].a[1]=1;
    for(int i=f[n].a[0];i>=1;i--)
    printf("%d",f[n].a[i]);
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值