BZOJ 2038: [2009国家集训队]小Z的袜子(hose)

[2009国家集训队]小Z的袜子(hose)

Time Limit: 20 Sec  Memory Limit: 259 MB
Submit: 8920  Solved: 4094
[Submit][Status][Discuss]

Description

作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1N编号,然后从编号LR(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。

Input

输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。

Output

包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)

Sample Input

6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6

Sample Output

2/5
0/1
1/1
4/15
【样例解释】
询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
【数据规模和约定】
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。


分块莫队


#include<cstdio>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdlib>
#define ll long long 
using namespace std;
inline ll read()
{
    int x=0;char ch=getchar();
    while(ch<'0'||ch>'9')ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-'0',ch=getchar();
    return x;
}
const int N=50010;
int n,m,pos[N],c[N];
ll s[N],ans;
inline ll gcd(ll a,ll b)
{return (b==0)?a:gcd(b,a%b);}
inline ll sqr(ll x){return x*x;}
struct data
{int l,r,id;ll a,b;}a[N];
inline bool cmp(data a,data b)
{return (pos[a.l]==pos[b.l])?a.r<b.r:a.l<b.l;}
inline bool cmp_id(data a,data b)
{return a.id<b.id;}
inline void update(int p,int add)
{
    ans-=sqr(s[c[p]]);
    s[c[p]]+=add;
    ans+=sqr(s[c[p]]);
}
void initial()
{
    n=read();m=read();
    for(int i=1;i<=n;i++)
    c[i]=read();
    int block=int(sqrt(n));
    for(int i=1;i<=n;i++)
    pos[i]=(i-1)/block+1;
    for(int i=1;i<=m;i++)
    {
        a[i].l=read();a[i].r=read();
        a[i].id=i;
    }
}
void solve ()
{
    for(int i=1,l=1,r=0;i<=m;i++)
    {
        for(;r<a[i].r;r++)update(r+1,1);
        for(;r>a[i].r;r--)update(r,-1);
        for(;l<a[i].l;l++)update(l,-1);
        for(;l>a[i].l;l--)update(l-1,1);
        if(a[i].l==a[i].r)
        {
            a[i].a=0;a[i].b=1;
            continue;
        }
        a[i].a=ans-(a[i].r-a[i].l+1);
        a[i].b=(ll)(a[i].r-a[i].l+1)*(a[i].r-a[i].l);
        ll k=gcd(a[i].a,a[i].b);
        a[i].a/=k;a[i].b/=k;
    }
}
int main()
{
    initial();
    sort(a+1,a+m+1,cmp);
    solve();
    sort(a+1,a+m+1,cmp_id);
    for(int i=1;i<=m;i++)
    printf("%lld/%lld\n",a[i].a,a[i].b);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值