BZOJ 3809: Gty的二逼妹子序列

3809: Gty的二逼妹子序列

Time Limit: 80 Sec  Memory Limit: 28 MB
Submit: 1778  Solved: 529
[Submit][Status][Discuss]

Description

Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题。
对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数。
为了方便,我们规定妹子们的美丽度全都在[1,n]中。
给定一个长度为n(1<=n<=100000)的正整数序列s(1<=si<=n),对于m(1<=m<=1000000)次询问“l,r,a,b”,每次输出sl...sr中,权值∈[a,b]的权值的种类数。

Input

第一行包括两个整数n,m(1<=n<=100000,1<=m<=1000000),表示数列s中的元素数和询问数。
第二行包括n个整数s1...sn(1<=si<=n)。
接下来m行,每行包括4个整数l,r,a,b(1<=l<=r<=n,1<=a<=b<=n),意义见题目描述。
保证涉及的所有数在C++的int内。
保证输入合法。

Output

对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。

Sample Input

10 10
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4

Sample Output

2
0
0
2
1
1
1
0
1
2

HINT

样例的部分解释:


5 9 1 2

子序列为4 1 5 1 2

在[1,2]里的权值有1,1,2,有2种,因此答案为2。


3 4 7 9

子序列为5 1

在[7,9]里的权值有5,有1种,因此答案为1。


4 4 2 5

子序列为1

没有权值在[2,5]中的,因此答案为0。


2 3 4 7

子序列为4 5

权值在[4,7]中的有4,5,因此答案为2。


建议使用输入/输出优化。


第一想法是莫队加树状数组

看别人的题解觉得用分块也是很精巧的


#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define pa pair<int,int>
#define ll long long
#define inf 1000000000
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int n,m,blo,cnt;
int a[100005],ans[1000005];
int bl[100005],l[1005],r[1005];
int c[100005],bloans[1005];
struct que{
    int l,r,a,b,rank;
}q[1000005];
bool operator<(que a,que b)
{
    if(bl[a.l]!=bl[b.l])return a.l<b.l;
    return a.r<b.r;
}
int query(int x,int y)
{
    int tmp=0;
    int L=bl[x],R=bl[y];
    for(int i=L+1;i<R;i++)
        tmp+=bloans[i];
    if(L==R)
        for(int i=x;i<=y;i++)
        {
            if(c[i])tmp++;
        }
    else
    {
        for(int i=x;i<=r[L];i++)
            if(c[i])tmp++;
        for(int i=l[R];i<=y;i++)
            if(c[i])tmp++;
    }
    return tmp;
}
void del(int x)
{
    c[x]--;
    if(c[x]==0)bloans[bl[x]]--;
}
void add(int x)
{
    c[x]++;
    if(c[x]==1)bloans[bl[x]]++;
}
void solve()
{
    int l=1,r=0;
    for(int i=1;i<=m;i++)
    {
        while(l<q[i].l)del(a[l]),l++;
        while(r>q[i].r)del(a[r]),r--;
        while(l>q[i].l)l--,add(a[l]);
        while(r<q[i].r)r++,add(a[r]);
        ans[q[i].rank]=query(q[i].a,q[i].b);
    }
}
int main()
{
    n=read();m=read();blo=sqrt(n/2);
    cnt=n/blo+n%blo!=0;
    for(int i=1;i<=n;i++)bl[i]=(i-1)/blo+1;
    for(int i=1;i<=n;i++)
    {
        r[bl[i]]=i;
        if(!l[bl[i]])l[bl[i]]=i;
    }
    for(int i=1;i<=n;i++)a[i]=read();
    for(int i=1;i<=m;i++)
    {
        q[i].l=read();q[i].r=read();
        q[i].a=read();q[i].b=read();
        q[i].rank=i;
    }
    sort(q+1,q+m+1);
    solve();
    for(int i=1;i<=m;i++)printf("%d\n",ans[i]);
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值