1832: [AHOI2008]聚会
Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1429 Solved: 597
[Submit][Status][Discuss]
Description
Y岛风景美丽宜人,气候温和,物产丰富。Y岛上有N个城市,有N-1条城市间的道路连接着它们。每一条道路都连接某两个城市。幸运的是,小可可通过这些道路可以走遍Y岛的所有城市。神奇的是,乘车经过每条道路所需要的费用都是一样的。小可可,小卡卡和小YY经常想聚会,每次聚会,他们都会选择一个城市,使得3个人到达这个城市的总费用最小。 由于他们计划中还会有很多次聚会,每次都选择一个地点是很烦人的事情,所以他们决定把这件事情交给你来完成。他们会提供给你地图以及若干次聚会前他们所处的位置,希望你为他们的每一次聚会选择一个合适的地点。
Input
第一行两个正整数,N和M。分别表示城市个数和聚会次数。后面有N-1行,每行用两个正整数A和B表示编号为A和编号为B的城市之间有一条路。城市的编号是从1到N的。再后面有M行,每行用三个正整数表示一次聚会的情况:小可可所在的城市编号,小卡卡所在的城市编号以及小YY所在的城市编号。
Output
一共有M行,每行两个数Pos和Cost,用一个空格隔开。表示第i次聚会的地点选择在编号为Pos的城市,总共的费用是经过Cost条道路所花费的费用。
Sample Input
6 4
1 2
2 3
2 4
4 5
5 6
4 5 6
6 3 1
2 4 4
6 6 6
1 2
2 3
2 4
4 5
5 6
4 5 6
6 3 1
2 4 4
6 6 6
Sample Output
5 2
2 5
4 1
6 0
数据范围:
100%的数据中,N<=500000,M<=500000。
40%的数据中N<=2000,M<=2000。
2 5
4 1
6 0
数据范围:
100%的数据中,N<=500000,M<=500000。
40%的数据中N<=2000,M<=2000。
这题一看就是求LCA
三个两两各取一次,比较后得出最优解
再看看发现会有两个的LCA是相同的,不同的那个就是答案
括弧 用链刨写的LCA所以rank很高
而且是双倍经验 好开心
#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<complex>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<queue>
#include<set>
#include<map>
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f*x;
}
const int N=500100;
int n,ecnt,last[N],d[N],size[N],top[N],fa[N];
struct EDGE {int fr,to,nt;}e[N<<1];
inline void add(int u,int v){e[++ecnt]=(EDGE){u,v,last[u]};last[u]=ecnt;}
void dfs1(int u)
{
size[u]=1;
for(int i=last[u];i;i=e[i].nt)
{
int v=e[i].to;
if(v==fa[u])continue;
d[v]=d[u]+1;fa[v]=u;
dfs1(v);
size[u]+=size[v];
}
}
void dfs2(int u,int tp)
{
top[u]=tp;int k=0;
for(int i=last[u];i;i=e[i].nt)
{
int v=e[i].to;
if(v==fa[u])continue;
if(size[k]<size[v])k=v;
}
if(!k)return;
dfs2(k,tp);
for(int i=last[u];i;i=e[i].nt)
{int v=e[i].to;if(v==fa[u]||v==k)continue;dfs2(v,v);}
}
int query_lca(int x,int y)
{
while(top[x]!=top[y])
{if(d[top[x]]<d[top[y]])y=fa[top[y]];else x=fa[top[x]];}
return d[x]<d[y]?x:y;
}
inline int dis(int x,int y){int lca=query_lca(x,y);return d[x]+d[y]-d[lca]-d[lca];}
int main()
{
n=read();int u,v,x,m=read();
for(int i=1;i<n;i++){u=read();v=read();add(u,v);add(v,u);}
dfs1(1);dfs2(1,1);
while(m--)
{
u=read();v=read();x=read();
int p1=query_lca(x,u),p2=query_lca(u,v),p3=query_lca(x,v),ans=0,lca;
if(p1==p2)lca=p3;
else if(p2==p3)lca=p1;
else lca=p2;
ans=dis(x,lca)+dis(v,lca)+dis(u,lca);
printf("%d %d\n",lca,ans);
}
}