2259: [Oibh]新型计算机
Time Limit: 6 Sec Memory Limit: 128 MBSubmit: 600 Solved: 187
[Submit][Status][Discuss]
Description
Tim正在摆弄着他设计的“计算机”,他认为这台计算机原理很独特,因此利用它可以解决许多难题。
但是,有一个难题他却解决不了,是这台计算机的输入问题。新型计算机的输入也很独特,假设输入序列中有一些数字(都是自然数——自然数包括0),计算机先读取第一个数字S1,然后顺序向后读入S1个数字。接着再读一个数字S2,顺序向后读入S2个数字……依此类推。不过只有计算机正好将输入序列中的数字读完,它才能正确处理数据,否则计算机就会进行自毁性操作!
Tim现在有一串输入序列。但可能不是合法的,也就是可能会对计算机造成破坏。于是他想对序列中的每一个数字做一些更改,加上一个数或者减去一个数,当然,仍然保持其为自然数。使得更改后的序列为一个新型计算机可以接受的合法序列。
不过Tim还希望更改的总代价最小,所谓总代价,就是对序列中每一个数操作的参数的绝对值之和。
写一个程序:
从文件中读入原始的输入序列;
计算将输入序列改变为合法序列需要的最小代价;
向输出文件打印结果。
Input
输入文件包含两行,第一行一个正整数N,N<1 000 001。
输入文件第二行包含N个自然数,表示输入序列。
Output
仅一个整数,表示把输入序列改变为合法序列需要的最小代价,保证最小代价小于109。
Sample Input
4
2 2 2 2
2 2 2 2
Sample Output
1
固执的认为是dp,结果实在想不出 去翻题解
heap+dijkstra 建图看代码吧
#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<complex>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<map>
#include<set>
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
void print(int x)
{if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');}
const int N=1000100;
bool pr[N],nt[N];
int n,ecnt,last[N];
struct EDGE{int to,nt,val;}e[N<<3];
inline void add(int u,int v,int val)
{e[++ecnt]=(EDGE){v,last[u],val};last[u]=ecnt;}
struct P{int pos,dis;friend bool operator <(const P &x,const P &y){return x.dis>y.dis;}};
int dis[N];
bool vis[N];
priority_queue<P>q;
void dijkstra()
{
memset(dis,0X3f,sizeof(dis));
dis[1]=0;
q.push((P){1,0});
register int u,i;
while(!q.empty())
{
u=q.top().pos;q.pop();
if(vis[u])continue;vis[u]=1;
for(i=last[u];i;i=e[i].nt)
if(dis[e[i].to]>dis[u]+e[i].val)
{
dis[e[i].to]=dis[u]+e[i].val;
q.push((P){e[i].to,dis[e[i].to]});
}
}
}
int main()
{
n=read();
register int i,j,x;
for(i=1;i<=n;++i)
{
x=read();
for(j=i+1;j<=min(i+x+1,n)&&!pr[j];++j)pr[j]=1,add(j,j-1,1);
for(j=i+1+x;j<=n&&!nt[j];++j)nt[j]=1,add(j,j+1,1);
i+x<=n?add(i,i+x+1,0):add(i,n+1,i+x-n);
}
dijkstra();
print(dis[n+1]);puts("");return 0;
}
/*
4
2 2 2 2
1
*/