POJ 2942:Knights of the Round Table tarjan点双联通分量 二分图染色找奇环

Knights of the Round Table
Time Limit: 7000MS Memory Limit: 65536K
Total Submissions: 13534 Accepted: 4536

Description

Being a knight is a very attractive career: searching for the Holy Grail, saving damsels in distress, and drinking with the other knights are fun things to do. Therefore, it is not very surprising that in recent years the kingdom of King Arthur has experienced an unprecedented increase in the number of knights. There are so many knights now, that it is very rare that every Knight of the Round Table can come at the same time to Camelot and sit around the round table; usually only a small group of the knights isthere, while the rest are busy doing heroic deeds around the country. 

Knights can easily get over-excited during discussions-especially after a couple of drinks. After some unfortunate accidents, King Arthur asked the famous wizard Merlin to make sure that in the future no fights break out between the knights. After studying the problem carefully, Merlin realized that the fights can only be prevented if the knights are seated according to the following two rules:
  • The knights should be seated such that two knights who hate each other should not be neighbors at the table. (Merlin has a list that says who hates whom.) The knights are sitting around a roundtable, thus every knight has exactly two neighbors.
  • An odd number of knights should sit around the table. This ensures that if the knights cannot agree on something, then they can settle the issue by voting. (If the number of knights is even, then itcan happen that ``yes" and ``no" have the same number of votes, and the argument goes on.)
Merlin will let the knights sit down only if these two rules are satisfied, otherwise he cancels the meeting. (If only one knight shows up, then the meeting is canceled as well, as one person cannot sit around a table.) Merlin realized that this means that there can be knights who cannot be part of any seating arrangements that respect these rules, and these knights will never be able to sit at the Round Table (one such case is if a knight hates every other knight, but there are many other possible reasons). If a knight cannot sit at the Round Table, then he cannot be a member of the Knights of the Round Table and must be expelled from the order. These knights have to be transferred to a less-prestigious order, such as the Knights of the Square Table, the Knights of the Octagonal Table, or the Knights of the Banana-Shaped Table. To help Merlin, you have to write a program that will determine the number of knights that must be expelled. 

Input

The input contains several blocks of test cases. Each case begins with a line containing two integers 1 ≤ n ≤ 1000 and 1 ≤ m ≤ 1000000 . The number n is the number of knights. The next m lines describe which knight hates which knight. Each of these m lines contains two integers k1 and k2 , which means that knight number k1 and knight number k2 hate each other (the numbers k1 and k2 are between 1 and n ). 

The input is terminated by a block with n = m = 0 . 

Output

For each test case you have to output a single integer on a separate line: the number of knights that have to be expelled. 

Sample Input

5 5
1 4
1 5
2 5
3 4
4 5
0 0

Sample Output

2

Hint

Huge input file, 'scanf' recommended to avoid TLE. 

这是第一次做英文题没看翻译啊啊啊啊(结果读错题了-_-)


这个题。。。思路并不难想

显然满足情况时,圆桌的一圈没有边(意会一下。。)

所以建一下补图,找个奇环就行了?? 嗯。。。


思路挺简单,但是内涵的知识让我又一次发觉的自己的浅薄

按照宝宝的思路 先得会搞奇环(没写过,但YY一下应该不难)

然后还得找最大的(似乎不是太难。。。刚开始以为只能开一次会。。。)

最后失去梦想的宝宝去查了题解。。。


发现题读错,好像更懵逼了??

原来要先搞点双,之后再点双里搞奇环 (想想就觉得蛮对的)

具体就是酱(随便YY下就是对的辣):

性质:如果一个双连通分量内的某些顶点在一个奇圈中(即双连通分量含有奇圈),那么这个双连通分量的其他顶点也在某个奇圈中


至于点双怎么搞呢~

点双连通分量就是求割点,割点分开的每一块就是一个bcc,用一个栈存边(没有公共边,割点是公共点,每个bcc只有一个割点)


注意一下:

由于要求圆桌上至少三个人,所以补图中连向自己的边就不连了(但我知道就算不说你也不会连。。。。)

一个点可以在多个点双里,所以不可在过程中记录答案,要最后一起搞


还有一条没啥价值。。memset的时候要看好size 我竟然一脑瘫就写成了0。。刚了一下午没看到。。

这个时候,我要和其他的博主们一起说一句:

做这题真是一种折磨


话说这里有个很全的题解 就是代码。。。。不说了。。。


#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<complex>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<map>
#include<set>

using namespace std;

typedef long long ll;

inline int read()
{
	int x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch<='9'&&ch>='0'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
	return x*f;
}
void print(int x)
{if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');}

const int N=1010,M=1001000;

int ecnt,last[N];
struct EDGE{int fr,to,nt;}e[M<<1];
inline void add(int u,int v)
{e[++ecnt]=(EDGE){u,v,last[u]};last[u]=ecnt;}

int n,m;

bool mp[N][N],used[M<<1],book[N],odd[N];

int dfn[N],low[N],tim,st[M<<1],top;

void initial()
{
	ecnt=1;tim=top=0;
	memset(last,0,sizeof(last));memset(used,0,sizeof(used));
	memset(mp,0,sizeof(mp));memset(odd,0,sizeof(odd));
	memset(dfn,0,sizeof(dfn));memset(low,0,sizeof(low));
}

void build()
{
	register int i,j;
	for(i=1;i<=n;++i)for(j=i+1;j<=n;++j)
	if(!mp[i][j])add(i,j),add(j,i);
}

int col[N];

bool color(int u)
{
	for(int i=last[u];i;i=e[i].nt)if(book[e[i].to])
	{
		if(!col[e[i].to])
		{
			col[e[i].to]=col[u]^1;
			return color(e[i].to);
		}
		else if(col[u]==col[e[i].to])return 0;
	}
	return 1;
}

void check(int u)
{
	memset(col,0,sizeof(col));
	memset(book,0,sizeof(book));
	while(1)
	{
		EDGE tmp=e[st[top--]];
		book[tmp.fr]=book[tmp.to]=1;
		if(tmp.fr==u)break;
	}
	col[u]=2;bool ok=color(u);
	if(!ok)for(int i=1;i<=n;++i)if(book[i])odd[i]=1;
}

void tarjan(int u)
{
	dfn[u]=low[u]=++tim;
	for(int i=last[u];i;i=e[i].nt)
	if(!used[i])
	{
		used[i]=used[i^1]=1;st[++top]=i;
		if(!dfn[e[i].to])
		{
			tarjan(e[i].to);
			low[u]=min(low[u],low[e[i].to]);
			if(dfn[u]<=low[e[i].to])check(u);
		}
		else if(dfn[e[i].to]<low[u])low[u]=dfn[e[i].to];
	}
}

int main()
{
	register int i,u,v,ans;
	while(scanf("%d%d",&n,&m)==2&&n+m)
	{
		initial();
		for(i=1;i<=m;++i)u=read(),v=read(),mp[u][v]=mp[v][u]=1;
		build();
		for(u=1;u<=n;++u)if(!dfn[u])tarjan(u);
		ans=0;
		for(u=1;u<=n;++u)if(!odd[u])ans++;
		print(ans);puts("");
	}
}
/*
5 5
1 4
1 5
2 5
3 4
4 5
0 0

2
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值