1442: [Poi2006]Crystal
Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 322 Solved: 117
[Submit][Status][Discuss]
Description

Input
每一行给出数字N,2<=N<=50 下面一行给出N个数字.每个数字在[1,2^32-1]
Output
Sample Input
3
2 1 3
2 1 3
Sample Output
5
And the following are every possible numbers of atoms of each particular element:
(0, 1, 1), (1, 0, 1), (1, 1, 0), (2, 0, 2), (2, 1, 3).
And the following are every possible numbers of atoms of each particular element:
(0, 1, 1), (1, 0, 1), (1, 1, 0), (2, 0, 2), (2, 1, 3).
从高到底枚举每个二进制位
计算该位之前的二进制位都选满的情况下该位之后的不同选择对答案的贡献
( 因而进入下一位的前提是所有数在此之前的二进制位异或和为0 )
f[i][0/1]表示前i个数该位异或和为0/1的方案数 很好转移 可以看code
之后的计算贡献 YY一下
写完题解发现随随便便(后缀和)就可以变成O(nlog(int)) 这样是不是就多了个部分分??
懒的改了。就这样吧。。。 /捂脸熊
#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch<='9'&&ch>='0'){x=10*x+ch-'0';ch=getchar();}
return x*f;
}
const int N=1010,mod=int(1e9)+7;
ll a[N],f[N][2];
int main()
{
freopen("circircir.in","r",stdin);
freopen("circircir.out","w",stdout);
int n=read();
ll ans=0,s;
register int i,j,k,t,p;
for(i=1;i<=n;++i)a[i]=read();
for(i=31;~i;i--)
{
f[0][0]=1;t=0;
for(j=1;j<=n;++j)
{
if(a[j]&(1<<i))
{
f[j][0]=(f[j-1][0]*(1ll<<i)%mod+f[j-1][1]*((a[j]&((1ll<<i)-1))+1))%mod;
f[j][1]=(f[j-1][1]*(1ll<<i)%mod+f[j-1][0]*((a[j]&((1ll<<i)-1))+1))%mod;
}
else
{
f[j][0]=f[j-1][0]*(a[j]+1)%mod;
f[j][1]=f[j-1][1]*(a[j]+1)%mod;
}
}
for(j=1;j<=n;++j)
if(a[j]&(1<<i))
{
t++;
s=1;p=0;
for(k=j+1;k<=n;++k)
s=s*((a[k]&((1ll<<i)-1))+1)%mod;
for(k=j+1;k<=n;++k)
p^=(a[k]>>i);
ans+=s*f[j-1][p]%mod;
ans%=mod;
}
for(j=1;j<=n;++j)
a[j]=a[j]&((1ll<<i)-1);
if(t&1)break;
}
ans=(ans-(t&1)+mod)%mod;
cout<<ans<<endl;
return 0;
}