BZOJ 4826: [Hnoi2017]影魔 单调栈 主席树

版权声明:想转就转吧,注明出处就行 括弧笑 https://blog.csdn.net/BlackJack_/article/details/79112246

4826: [Hnoi2017]影魔

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit: 665  Solved: 382
[Submit][Status][Discuss]

Description

影魔,奈文摩尔,据说有着一个诗人的灵魂。事实上,他吞噬的诗人灵魂早已成千上万。千百年来,他收集了各式各样的灵魂,包括诗人、牧师、帝王、乞丐、奴隶、罪人,当然,还有英雄。每一个灵魂,都有着自己的战斗力,而影魔,靠这些战斗力提升自己的攻击。奈文摩尔有 n 个灵魂,他们在影魔宽广的体内可以排成一排,从左至右标号 1 到 n。第 i个灵魂的战斗力为 k[i],灵魂们以点对的形式为影魔提供攻击力,对于灵魂对 i,j(i<j)来说,若不存在 k[s](i<s<j)大于 k[i]或者 k[j],则会为影魔提供 p1 的攻击力(可理解为:当 j=i+1 时,因为不存在满足 i<s<j 的 s,从而 k[s]不存在,这时提供 p1 的攻击力;当 j>i+1 时,若max{k[s]|i<s<j}<=min{k[i],k[j]} , 则 提 供 p1 的 攻 击 力 ); 另 一 种 情 况 , 令 c 为k[i+1],k[i+2],k[i+3]......k[j-1]的最大值,若 c 满足:k[i]<c<k[j],或者 k[j]<c<k[i],则会为影魔提供 p2 的攻击力,当这样的 c 不存在时,自然不会提供这 p2 的攻击力;其他情况的点对,均不会为影魔提供攻击力。影魔的挚友噬魂鬼在一天造访影魔体内时被这些灵魂吸引住了,他想知道,对于任意一段区间[a,b],1<=a<b<=n,位于这些区间中的灵魂对会为影魔提供多少攻击力,即考虑 所有满足a<=i<j<=b 的灵魂对 i,j 提供的攻击力之和。顺带一提,灵魂的战斗力组成一个 1 到 n 的排列:k[1],k[2],...,k[n]。

Input

第一行 n,m,p1,p2
第二行 n 个数:k[1],k[2],...,k[n]
接下来 m 行,每行两个数 a,b,表示询问区间[a,b]中的灵魂对会为影魔提供多少攻击力。
1 <= n,m <= 200000;1 <= p1,p2 <= 1000

Output

共输出 m 行,每行一个答案,依次对应 m 个询问。

Sample Input

10 5 2 3
7 9 5 1 3 10 6 8 2 4
1 7
1 9
1 3
5 9
1 5

Sample Output

30
39
4
13
16

易知 得先单调栈扫出左右第一个比每个数大的是哪个 记为pre nt

之后就发现两个位置 i<jpre[j]<=i && nt[i]>=j 那么他们就会有p1的贡献

然而这种思路比较GG 最后BJ没能成功用它顺利解题...

// 参考了其他题解之后 觉得上面的思路虽然不low但是还是不好做 就放弃了...

考虑一个点 k会对一个点对 (i,j) 有贡献

当且仅当 a[k]=max(a[(i,j)]) && a[k]<a[i] && a[k]<a[j]

发现了什么 就是一个点 i 只会对(pre[i],nt[i]) 有贡献

再加上 (i,i+1) 的情况 所有的p1就都搞定了

对于p2 同样的思路

i 只会会对[pre[i],[i+1,nt[i]-1]],[[pre[i]+1,i-1],nt[i]] 有贡献

这样得到了所有点对后 这就变成了一个二维数点问题

/*

很多题解说左右端点分别为横纵坐标

觉得这个说法并不严谨

每次查询[l,r] 是找左右端点都在这个区间内的点

也就是说 每次查询的是一个对角线在y=x上的正方形

所以横纵坐标的转换并不影响结果

而这道题为了支持的p2的两种情况 横纵坐标是一定要互换的

*/

由于没有修改 我们可以可持久化压掉一维

主席树标记永久化支持区间加就好了


#include<cmath>
#include<ctime>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<string>
#include<bitset>
#include<queue>
#include<set>
#include<map>
using namespace std;

typedef long long ll;

inline int read()
{
	int x=0,f=1;char ch=getchar();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
	while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
void print(ll x)
{if(x<0)putchar('-'),x=-x;if(x>=10)print(x/10);putchar(x%10+'0');}

const int N=200100;

struct president_tree{int ls,rs;ll sum,tag;}tr[N*60];
int sz,root[N];

void insert(int &k,int pre,int l,int r,int x,int y,int val)
{
	k=++sz;
	tr[k]=tr[pre];
	tr[k].sum+=1ll*val*(min(y,r)-max(l,x)+1);
	if(l>=x && r<=y)
	{tr[k].tag+=val;return ;}
	int mid=(l+r)>>1;
	if(x<=mid) insert(tr[k].ls,tr[pre].ls,l,mid,x,y,val);
	if(y>mid) insert(tr[k].rs,tr[pre].rs,mid+1,r,x,y,val);
}

ll query(int k,int l,int r,int x,int y)
{
	if((l>=x&&r<=y) || !k) return tr[k].sum;
	ll s(0),t(0);
	int mid=(l+r)>>1;
	if(x<=mid) s=query(tr[k].ls,l,mid,x,y);
	if(y>mid) t=query(tr[k].rs,mid+1,r,x,y);
	return s+t+1ll*tr[k].tag*(min(y,r)-max(l,x)+1);
}

struct event{int l,r,val;};

int pre[N],nt[N];
vector<event> vec[N];

int a[N],st[N];

int main()
{
	int n=read(),m=read(),p1=read(),p2=read();
	register int i,j,l,r,top(0);
	for(i=1;i<=n;++i) a[i]=read();
	for(i=1;i<=n;++i)
	{
		while(top && a[st[top]]<a[i]) top--;
		pre[i]=st[top];
		st[++top]=i;
	}
	top=0;st[top]=n+1;
	for(i=n;i;i--)
	{
		while(top && a[st[top]]<a[i]) top--;
		nt[i]=st[top];
		st[++top]=i;
	}
	for(i=1;i<=n;++i)
	{
		if(i!=n) vec[i].push_back((event){i+1,i+1,p1});
		if(pre[i] && nt[i]<=n) vec[pre[i]].push_back((event){nt[i],nt[i],p1});
		if(pre[i] && i<nt[i]-1) vec[pre[i]].push_back((event){i+1,nt[i]-1,p2});
		if(i>pre[i]+1 && nt[i]<=n) vec[nt[i]].push_back((event){pre[i]+1,i-1,p2});
	}
	for(i=1;i<=n;++i)
	{
		root[i]=root[i-1];
		for(j=0;j<vec[i].size();++j)
			insert(root[i],root[i],1,n,vec[i][j].l,vec[i][j].r,vec[i][j].val);
	}
	while(m--)
	{
		l=read();r=read();
		print(query(root[r],1,n,l,r)-query(root[l-1],1,n,l,r));puts("");
	}
	return 0;
}


展开阅读全文

没有更多推荐了,返回首页