边缘计算有哪些常用场景?TSINGSEE边缘AI视频分析技术行业解决方案

随着ChatGPT生成式人工智能的爆发,AI技术在业界又掀起一波新浪潮。值得关注的是,边缘AI智能也在AI人工智能技术进步的基础上得到了快速发展。IDC跟踪报告数据显示,2021年我国的边缘计算服务器整体市场规模达到33.1亿美元,预计2020~2025年边缘计算服务器整体市场规模年复增长率将达到22.2%。

TSINGSEE青犀边缘计算AI智能分析硬件,内置AI算法引擎,基于AI芯片+AI框架+AI算法,三者协同工作,为系统提供强劲AI算力。硬件可支持高路数的AI智能分析,快速实现一脸通、人车管控、周界警戒等AI能力应用,为用户提供高性价比的场景智能化解决方案。硬件内置人脸、视频结构化多种基础算法,单机最大接入16路200万视频流或32路抓拍机,并能拓展周界警戒、行为警戒、人数统计、明厨亮灶、消防安监、智慧社区、加油站等丰富的行业算法,按需调用,支持GA/T1400、RTSP、GB/T28181等标准化协议,可充分利旧原有相机快速完成智能化升级和改造。

边缘AI计算智能分析网关常见应用场景:

1、智慧工厂

工厂生产车间一般是从原材料到成品的流水作业,有大量机器设备和物料。这不仅有作业过程监管需求,同时,也存在生产发生异常及产品质量问题的过程还原需求,需要结合直观现场与客观数据的融合分析。利用边缘AI智能,则可以对工厂车间的实时视频流进行检测与分析,通过对生产车间的人,物、行为进行抓拍、检测与识别,比如人员安全防护装备的穿戴情况(安全帽/工作服/口罩/手套等)、禁区入侵、人员意外摔倒、违规操作(抽烟/玩手机/打电话等),对识别到的异常情况进行预警和通知,以此来保障工厂车间的有序、安全生产,对生产车间进行无人化、智能化监管。

2、智慧工地

基于边缘AI智能的智慧工地运营与监管模式,是将AI识别技术深度融合应用于传统施工建筑与工程建造行业,通过在工地放置一个具备边缘AI分析能力的智能分析网关,利用计算机视觉技术/智能视频分析技术实现对工地的安全监控工作,例如实时检测施工人员是否佩戴安全帽、穿着反光衣,并对施工人员的违规或不安全行为(越界、入侵、、摔倒、奔跑、抽烟/玩手机/打电话等)进行检测和告警提醒,此外也能对现场的人员、车辆、环境、安保等其他安全隐患进行预警和提醒,改变传统监管的被动式发现,通过主动识别不安全因素来满足少人监管、智能值守的管理目的。

3、智慧城管

利用视频+AI等技术可实现对城市管理中违规、违法事件的实时监管、主动发现、智能分析,解决传统人工巡查模式的耗时费力成本高、过程依赖个人、覆盖面和巡检频率不佳、质量管控不严等各种问题。利用AI识别技术则可以将巡查过程中的海量数据进行实时分析,借助智能数据采集车的车载AI探头、道路监控摄像头、高空探头、移动执法仪等采集设备,对“跨门营业”、“乱设摊”、“占道堆物”、“占道违停”等市容违法行为进行图像识别和物联感知。

智能分析网关可以实现对监管场景进行智能检测,检测到影响市容街面秩序的行为,如车辆违停、占道经营、违规撑伞、违规广告牌等,将立即触发告警,系统将抓拍现场截图并上报给平台,方便管理人员查看与处理,固定违法事实。通过安防监控/视频汇聚综合管理平台EasyCVR的视频能力,可以实现对监控现场的实时视频直播监控、实时录像,历史录像检索与回放、告警上报、云台控制、语音对讲等。

边缘计算技术的应用意义在于提高响应速度、保护数据隐私、减轻带宽压力、提高系统可靠性以及适应物联网和大规模部署的需求,它的实时性和低延迟特点,可以实现更快速、即时的响应,适用于对时效性要求较高的应用场景,为各种行业带来了更加灵活和高效的计算和服务能力,比如工业自动化、智能交通等。

### 人工智能在入侵检测系统中的技术原理 入侵检测系统利用人工智能技术能够显著提升安全防护能力。具体而言,两种主要方式被应用于人员入侵检测场景中:前端智能检测和后端智能处理[^2]。 #### 前端智能检测 基于内置AI算法的前端设备(如摄像头、边缘计算盒等),可以直接在数据产生的源头——即网络边界处执行初步的数据过滤与特征提取工作。这些智能化终端能够在本地完成实时视频分析任务,并迅速做出反应,从而减轻了数据中心的压力并降低了延迟时间。对于某些特定场合下的即时响应需求来说尤为重要。 #### 后端智能处理 当涉及到更复杂的模式识别以及大规模数据分析时,则会采用集中式的解决方案。从前端获取的信息会被发送至专门设立的服务平台,在那里借助强大的运算资源来运行更为精细深入的学习模型。例如,“TSINGSEE青犀AI算法中台”就是一个典型的例子,它提供了丰富的API接口供开发者调用,支持多种类型的视觉感知服务,包括但不限于人体姿态估计、行为理解等功能模块。 这两种架构都依赖于深度学习框架所提供的强大工具集来进行训练及推理操作。通过对大量标注样本的学习过程建立起来的高度抽象化的数学映射关系使得机器具备了一定程度上的自主判断力,进而实现了对未知情况的有效预测。 ### 应用实例展示 为了更好地说明上述理论的实际应用场景,下面给出一段简单的Python代码片段作为演示用途: ```python import cv2 from tsingsee import AIPlatformClient, PersonIntrusionDetector def detect_intrusions(video_path): client = AIPlatformClient(api_key='your_api_key') detector = PersonIntrusionDetector(client) cap = cv2.VideoCapture(video_path) while True: ret, frame = cap.read() if not ret: break result = detector.detect(frame) # 显示结果框图 for bbox in result['bboxes']: x1,y1,x2,y2 = map(int,bbox[:4]) cv2.rectangle(frame,(x1,y1),(x2,y2),(0,255,0),2) cv2.imshow('Detection',frame) key=cv2.waitKey(1)&0xFF if key==ord('q'): break detect_intrusions('./surveillance_video.mp4') ``` 这段程序展示了如何集成第三方提供的SDK库文件以简化开发流程的同时也保持较高的灵活性。用户只需提供有效的认证凭证即可轻松接入云端服务平台享受专业的技术服务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值