题目描述
卡拉兹(Callatz)猜想:
对任何一个自然数n,如果它是偶数,那么把它砍掉一半:如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,据说当时耶鲁大学师生齐动员,拼命想证明这个貌似很荒唐的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
此处并非要证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步才能得到n=1?
输入格式
每个测试输入包含1个测试用例,即给出自然数n的值。
输出格式
输出从n计算到1需要的步数。
输入样例
3
输出样例
5
思路
① while循环来判断n是否为1
② 如果n%2==0,n=n/2;i++ 否则,n=(3n+1)/2;i++;
代码实现
#include<stdio.h>
int main(){
int n,i;
scanf("%d",&n);
while(n!=1){
//如果n为偶数,那么砍掉一半
if(n%2==0){
n=n/2;
i++;
} else{
n=(3*n+1)/2;
i++;
}
}
printf("%d",i);
return 0;
}