概率统计基础及其R语言实现-2

本文主要介绍了概率统计中的离散型随机变量分布,包括伯努利、二项、几何和泊松分布,并详细阐述了二项分布的性质、均值和方差。此外,还提到了泊松分布作为二项分布的极限形式,以及连续型随机变量中的正态分布,强调了正态分布的参数和特性。
摘要由CSDN通过智能技术生成

二、典型概率分布

2.1 离散型随机变量分布

  • 伯努利分布(Bernouli)
  • 二项分布(Binomial)
  • 几何分布(Geometric)
  • 负二项分布(Negative binomial)
  • 泊松分布(poisson)

2.1.1 二项分布

 二项分布可用来描述由n次随机试验组成的随机结果,它满足以下条件:

  1. 重复进行n次随机试验
  2. n次试验相互独立,即一次试验结果不对其他试验结果产生影响
  3. 每次试验结果仅有两种可能
  4. 每次试验成功概率为p,失败概率为1-p

 假设我们重复某事件n次,每次试验只有A或B两种结果,A的概率为p,B的概率为1-p,则这n次试验的记录可能为:ABABAABBBAABB...BBAA,其中A有i个,则B有n-i个。因此每个这样的序列产生的可能性为:p^i(1-p)^{^n-i}, 又因为这样的序列共有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlancheXX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值