概率统计基础及其R语言实现-2

本文主要介绍了概率统计中的离散型随机变量分布,包括伯努利、二项、几何和泊松分布,并详细阐述了二项分布的性质、均值和方差。此外,还提到了泊松分布作为二项分布的极限形式,以及连续型随机变量中的正态分布,强调了正态分布的参数和特性。
摘要由CSDN通过智能技术生成

二、典型概率分布

2.1 离散型随机变量分布

  • 伯努利分布(Bernouli)
  • 二项分布(Binomial)
  • 几何分布(Geometric)
  • 负二项分布(Negative binomial)
  • 泊松分布(poisson)

2.1.1 二项分布

 二项分布可用来描述由n次随机试验组成的随机结果,它满足以下条件:

  1. 重复进行n次随机试验
  2. n次试验相互独立,即一次试验结果不对其他试验结果产生影响
  3. 每次试验结果仅有两种可能
  4. 每次试验成功概率为p,失败概率为1-p

 假设我们重复某事件n次,每次试验只有A或B两种结果,A的概率为p,B的概率为1-p,则这n次试验的记录可能为:ABABAABBBAABB...BBAA,其中A有i个,则B有n-i个。因此每个这样的序列产生的可能性为:p^i(1-p)^{^n-i}, 又因为这样的序列共有\binom{n}{i}

 由此可以得出:P_{i} = B(n,p) = \binom{n}{i}p^{i}(1-p)^{n-i},i=0,1,2,...,n

X服从二项分布就记为X~B(n,p),二项分布是最重要的离散型概率分布之一。

均值:E(x)=np

方差:Var(X)=np(1-p)

标准差:\sigma(X)=[np(1-p)]^{1/2}

 2.1.2 泊松分布

泊松分布可以用来描述以下随机变量:

  • 在一定时间内,电话总站接错电话的次数
  • 在一定时间内,其操作系统发生故障的次数
  • 一个铸件上的缺陷数
  • 一平方米玻璃上的气泡个数
  • 一件产品因擦伤留下的痕迹数
  • 一页书上的错字个数

由这些例子可以看出,泊松分布与计点过程相关联,并且是在一定时间范围内或一定区域内、一特定单位的前提下进行的,若用\lambda表示特定单位内的平均点数( \lambda>0),又令i表示某特定单位内实际出现的点数,则X取i值的概率为:

P(X=i) = \frac{e^{-\lambda }\lambda ^{i}}{i!}

 常记为X~P(\lambda)。

 均值:E(X)=\lambda

方差:Var(X)=\lambda

标准差:\sigma =\lambda ^{1/2}

2.1.3 特殊规律

 泊松分布可作为二项分布的极限而推导得到,一般来说,若X~B(n,p)其中n很大,p很小,而\lambda=n p不太大时,X的分布接近于泊松分布,这个事实可以将有些较难计算的二项分布转化为泊松分布来计算。

2.2 连续型随机变量分布

  • 均匀分布(uniform)
  • 正态分布(Normal)
  • 指数分布(exponential)
  • 威布尔分布

 2.2.1 正态分布

如果随机变量X的密度函数为:

f(x)=\frac{1}{\sqrt{2\pi }\sigma }e^{-\frac{(x-\mu)^2 }{2\sigma ^{2}}}

则称随机变量X服从正态分布,记为X~N(\mu ,\sigma ^2)。

正态分布的曲线是对称的钟形曲线,称为正态曲线。

 

 正态分布含有两个参数\mu \sigma,其中\mu为正态分布的均值,它是正态分布的中心,X在\mu附近取值的概率是最大的;\sigma ^2是正态分布的方差,\sigma越大,分布越分散,反之分布越集中。由上图也可以发现,当\sigma越大是,函数图像越宽,分布越散。

\mu决定正态曲线的位置,\sigma决定正态曲线的形状。

当我们固定标准差\sigma时,不同的均值,如\mu _{1}<\mu _{2},对应的正态曲线完全相同,只有位置不同。固定均值\mu时,不同的标准差,如\sigma _{1}<\sigma _{2},对应的正态分布曲线位置相同,但形状(高矮胖瘦)不同。

 \mu =0\sigma =1的正态分布较标准正态分布。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlancheXX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值