1.描述
我们有一个栅栏,它有n
个柱子,现在要给柱子染色,有k
种颜色可以染。
必须保证不存在超过2个相邻的柱子颜色相同,求有多少种染色方案。
注意事项
n
和k
都是非负整数
样例
n
= 3, k
= 2, return 6
post 1, post 2, post 3
way1 0 0 1
way2 0 1 0
way3 0 1 1
way4 1 0 0
way5 1 0 1
way6 1 1 0
2.分析
第一根柱子有k种选择,第二根柱子也有k种选择,到了第三根柱子就只有k-1种选择了。相比于经典的染色问题,实际上对于每根柱子,只有k种颜色可以染和k-1种颜色可以染两种情况。
3.代码
class Solution {
public:
/*
* @param n: non-negative integer, n posts
* @param k: non-negative integer, k colors
* @return: an integer, the total number of ways
*/
const int M=1005;
int numWays(int n,int k)
{
// write your code here
if(k==1)//只有一种颜色
{
if(n>2) return 0;
else
return 1;
}
int a[M];
a[1]=k;
a[2]=k*k;
for(int i=3;i<=n;i++)
{
a[i]=(k-1)*a[i-1]+(k-1)*a[i-2];
}
return a[n];
}
};
4.总结
当k=1即只有一种颜色时是比较特殊的一种简单情况,一般的在确定了前两种情况分别有k和k*k种情况后,每根柱子都是的染色情况都是取决于他前两棵柱子的染色情况,类似于斐波那契数列。第一棵柱子的染色情况*k-1加上第二棵柱子的染色情况*k-1加起来即为第三棵柱子的染色情况。a[i]表示到第i棵柱子共有多少种染色情况,根据i的不同划分为不同的状态。