开心的Blue完成了自己的想法,水题dp,两种方法过关!
描述北大信息学院的同学小明毕业之后打算创业开餐馆.现在共有n 个地点可供选择。小明打算从中选择合适的位置开设一些餐馆。这 n 个地点排列在同一条直线上。我们用一个整数序列m1, m2, ... mn 来表示他们的相对位置。由于地段关系,开餐馆的利润会有所不同。我们用pi 表示在mi 处开餐馆的利润。为了避免自己的餐馆的内部竞争,餐馆之间的距离必须大于k。请你帮助小明选择一个总利润最大的方案。
第1行:地点总数 n (n < 100), 距离限制 k (k > 0 && k < 1000).
第2行:n 个地点的位置m1 , m2, ... mn ( 1000000 > mi > 0 且为整数,升序排列)
第3行:n 个地点的餐馆利润p1 , p2, ... pn ( 1000 > pi > 0 且为整数)
2
3 11
1 2 15
10 2 30
3 16
1 2 15
10 2 30
40
30
解释
法一:f[i]表示前i个距离内的最大值
法二:#include <cstdio> #include <iostream> #include <cstring> using namespace std; int f[1000050],w[120],v[120]; int main() { int T,n,k,i,j; scanf("%d",&T); while (T--) { memset(f,0,sizeof(f)); scanf("%d%d",&n,&k); for (i=1;i<=n;i++) scanf("%d",&w[i]); for (i=1;i<=n;i++) { scanf("%d",&v[i]); f[w[i]]=v[i]; } for (i=1;i<=w[n];i++) if (i<k) f[i]=max(f[i],f[i-1]); else f[i]=max(f[i-k-1]+f[i],f[i-1]); printf("%d\n",f[w[n]]); } }
f[i]表示前i个商场内的最大值
#include <cstdio> #include <iostream> #include <cstring> using namespace std; int f[1000050],w[120],v[120]; int main() { int T,n,k,i,j,maxn=0; scanf("%d",&T); while (T--) { maxn=0; memset(f,0,sizeof(f)); scanf("%d%d",&n,&k); for (i=1;i<=n;i++) scanf("%d",&w[i]); for (i=1;i<=n;i++) scanf("%d",&v[i]); for (i=1;i<=n;i++) { f[i]=v[i]; if (w[i]>k) { for (j=1;j<=i&&w[j]<w[i]-k;j++) f[i]=max(f[j]+v[i],f[i]); } else f[i]=max(v[i],f[i-1]); maxn=max(maxn,f[i]); } printf("%d\n",maxn); } }