题目:
题解:
最暴力的方法就是求n!%k后缀有多少个0—-40pts
微微转化一下就是用1~n这些数字凑出多少个k(k%k=0)
我们把k质因数分解(话说这个题不给数据组数真是烦啊, 根号k 都不知道能不能过)
栗子:
40= 2^3 * 5^1;看看1~10能凑多少个(2^3 * 5^1);
我们可以考虑1~n含多少个质因数组a^m,对于所有的质因数组取一个min值就是能凑出来的组数
怎样求1~n的质因数组a^m个数呢?比如说1~10:2,2^2,6,2^3,10(共2^8,含有2组2^3)
除法!
10先除一波2=5,这是含2^1的,ans+5
再除一波4=2,这是含2^2的,ans+2
再除一波8=1,这是含2^3的,ans+1
这样就求出了8,除3就ok了
代码:
#include<cmath>
#include <cstring>
#include <algorithm>
#include <cstdio>
#define LL long long
const int N=1005;
using namespace std;
const LL INF=1e19;
LL cnt,ans,n,k,fac[N],num[N];
int main()
{
while(scanf("%lld%lld",&n,&k)==2)
{
ans=INF;
cnt=0;
memset(fac,0,sizeof(fac));
memset(num,0,sizeof(num));
for(LL i=2;i*i<=k;i++)
{
if(k%i)continue;
fac[++cnt]=i;
while(k%i==0)num[cnt]++,k/=i;
}
if(k!=1)fac[++cnt]=k,num[cnt]=1;
for(int i=1;i<=cnt;i++)
{
LL nu=0;
for(LL tmp=fac[i];tmp<=n;tmp*=fac[i])nu+=n/tmp;
ans=min(ans,nu/num[i]);
}
printf("%lld\n",ans);
}
}