【luogu10月月赛】一道中档题 Factorial(数论)

题目:

n!在k进制下后缀0的个数

题解:

最暴力的方法就是求n!%k后缀有多少个0—-40pts
微微转化一下就是用1~n这些数字凑出多少个k(k%k=0)
我们把k质因数分解(话说这个题不给数据组数真是烦啊, 根号k 都不知道能不能过)
栗子:
40= 2^3 * 5^1;看看1~10能凑多少个(2^3 * 5^1);
我们可以考虑1~n含多少个质因数组a^m,对于所有的质因数组取一个min值就是能凑出来的组数
怎样求1~n的质因数组a^m个数呢?比如说1~10:2,2^2,6,2^3,10(共2^8,含有2组2^3)
除法!
10先除一波2=5,这是含2^1的,ans+5
再除一波4=2,这是含2^2的,ans+2
再除一波8=1,这是含2^3的,ans+1
这样就求出了8,除3就ok了

代码:

#include<cmath>
#include <cstring>
#include <algorithm>
#include <cstdio>
#define LL long long
const int N=1005;
using namespace std;
const LL INF=1e19;
LL cnt,ans,n,k,fac[N],num[N];
int main()
{
    while(scanf("%lld%lld",&n,&k)==2)
    {
        ans=INF;
        cnt=0;
        memset(fac,0,sizeof(fac));
        memset(num,0,sizeof(num));
        for(LL i=2;i*i<=k;i++)
        {
            if(k%i)continue;
            fac[++cnt]=i;
            while(k%i==0)num[cnt]++,k/=i;
        }
        if(k!=1)fac[++cnt]=k,num[cnt]=1;
        for(int i=1;i<=cnt;i++)
        {
            LL nu=0;
            for(LL tmp=fac[i];tmp<=n;tmp*=fac[i])nu+=n/tmp;
            ans=min(ans,nu/num[i]);
        }
        printf("%lld\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值