[bzoj2111][ZJOI2010]Perm 排列计数(组合数学)

题目:

我是超链接

题解:

我们可以把这个题抽象为一棵二叉树,同一棵子树上儿子要比父亲权值大
那么1的值一定是1
对于一棵子树来说,最小的点一定是根节点,那么填数字的方案只跟子树大小有关
f[i]=C(size[i]-1,ls(i))*f[i*2]*f[i*2+1]
于是我们线性筛处理出阶乘和阶乘的逆元 代入即可得到WA
原因是这题n可以大于p 此时要用到Lucas定理。。。

代码:

#include <cstdio>
#include <iostream>
#define LL long long
using namespace std;
const int N=1000000;
LL mul[N+5],f[N+5],inv[N+5];int n,mod,size[N*2+5];
void pre()
{
    mul[0]=mul[1]=1;
    for (int i=2;i<=N;i++) mul[i]=mul[i-1]*i%mod;
    inv[0]=inv[1]=1;
    for (int i=2;i<=N;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod;
    for (int i=2;i<=N;i++) inv[i]=inv[i-1]*inv[i]%mod;
}
LL C(int n,int m)
{
    if (m>n) return 0;
    return mul[n]*inv[n-m]%mod*inv[m]%mod;
}
void dfs(int x)
{
    size[x]=1;
    if (x*2<=n)
    {
        dfs(x*2);
        size[x]+=size[x*2];
    }
    if (x*2+1<=n)
    {
        dfs(x*2+1);
        size[x]+=size[x*2+1];
    }
}
LL Lucas(int n,int m)
{
    if (m>n) return 0;
    LL ans=1;
    for (;m;n/=mod,m/=mod)
      ans=ans*C(n%mod,m%mod)%mod;
    return ans;
}
void answer(int x)
{
    f[x]=1;bool f1=0,f2=0;
    if (x*2<=n) answer(x*2),f1=1;
    if (x*2+1<=n) answer(x*2+1),f2=1;
    if (f1&&f2) f[x]=(LL)Lucas(size[x]-1,size[x*2])*f[x*2]%mod*f[x*2+1]%mod;
    else if (f1) f[x]=(LL)Lucas(size[x]-1,size[x*2])*f[x*2]%mod;
}
int main()
{
    scanf("%d%d",&n,&mod);
    pre();
    dfs(1);
    answer(1);
    printf("%lld",f[1]%mod);
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值