[BZOJ2440][中山市选2011]完全平方数(二分+容斥)

题目:

我是超链接

题解:

不能有完全平方数的因子。。有点眼熟,好像是 μ 函数?
因为合数可以表达为质数的乘积,我们只需要考虑质数的平方||质数*质数的平方
可以采用容斥原理:所有数字-1个质数的平方倍数+2个质数相乘的平方倍数-3个质数相乘的平方倍数…….
这个前面的符号似乎就是μ函数,对于某质因子幂的个数>=2,贡献直接就是0;然后k代表不同质因子的个数, (1)k 仿佛正好就是容斥系数
你开始枚举一个数i,看看i的平方在[1,mid]中存在几个
我们可以知道如果输入K,答案不会超过2*K,我们采用二分,二分mid,每次check[1,mid]区间内有多少个不符合条件的数字

代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#define LL long long
using namespace std;
const int N=1e5;
int miu[N+5],tot,sc[N+5];bool ss[N+5];
void mu()
{
    miu[1]=1;
    for (int i=2;i<=N;i++)
    {
        if (!ss[i]) sc[++tot]=i,miu[i]=-1;
        for (int j=1;j<=tot && sc[j]*i<=N;j++)
        {
            ss[sc[j]*i]=1;
            if (i%sc[j]==0) 
            {
                miu[i*sc[j]]=0;
                break;
            }
            else miu[i*sc[j]]=-miu[i];
        }
    }
}
LL check(LL mid)
{
    LL ans=0;int i;
    for (i=1;i<=sqrt(mid);i++)
      ans+=(LL)miu[i]*mid/(i*i);
    return ans;
}
int main()
{
    int T,k;
    mu();
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d",&k);
        LL l=1,r=k*2,ans;
        while (l<=r)
        {
            LL mid=(l+r)>>1;
            if(check(mid)>=k) ans=mid,r=mid-1;
            else l=mid+1;
        }
        printf("%lld\n",ans);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值