题目:
题解:
我们先tarjan缩个点,形成一个DAG,我们要改成反向边的边一定不在tarjan缩的点中(废话!)
我们增加一条逆向边可能会形成一个环,这个环的贡献是1到这条边的起点的权数+这条边的终点到1的权数(形成了一个这样的环)
我们可以用spfa预处理出节点1到其他所有节点的最长路(此时的节点都是缩完点之后,节点1就是1所在的节点)和所有点到节点1的最长路(反向连边不就ok),可以快速计算出每一条边逆向之后(可能)形成的环的贡献,最后对所有的贡献取一个max就好啦
代码:
#include <queue>
#include <cstdio>
#include <iostream>
#include <cstring>
#define N 100005
#define INF 1e9
using namespace std;
int tot,nxt[N],point[N],v[N],dfn[N],low[N],number[N],belong[N],stack[N],cnt,num,nn;
bool vis[N];int ans,x[N],y[N],tot1,nxt1[N],point1[N],v1[N],dis[N];
int tot2,nxt2[N],point2[N],v2[N],dis1[N];
void addline(int x,int y){++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y;}
void addline1(int x,int y){++tot1; nxt1[tot1]=point1[x]; point1[x]=tot1; v1[tot1]=y;}
void addline2(int x,int y){++tot2; nxt2[tot2]=point2[x]; point2[x]=tot2; v2[tot2]=y;}
void tarjan(int x)
{
dfn[x]=low[x]=++nn; vis[x]=1; stack[++cnt]=x;
for (int i=point[x];i;i=nxt[i])
if (!dfn[v[i]])
{
tarjan(v[i]);
low[x]=min(low[x],low[v[i]]);
}
else if (vis[v[i]]) low[x]=min(low[x],dfn[v[i]]);
if (low[x]==dfn[x])
{
int now;++num;
while (now!=x)
{
now=stack[cnt--];
vis[now]=0;
number[num]++;
belong[now]=num;
}
}
}
void spfa()
{
queue<int> q;
memset(vis,0,sizeof(vis));
q.push(belong[1]);
dis[belong[1]]=number[belong[1]];
while (!q.empty())
{
int now=q.front(); q.pop(); vis[now]=0;
for (int i=point1[now];i;i=nxt1[i])
if (dis[v1[i]]<dis[now]+number[v1[i]])
{
dis[v1[i]]=dis[now]+number[v1[i]];
if (!vis[v1[i]]) vis[v1[i]]=1,q.push(v1[i]);
}
}
memset(vis,0,sizeof(vis));
q.push(belong[1]);
dis1[belong[1]]=number[belong[1]];
while (!q.empty())
{
int now=q.front(); q.pop(); vis[now]=0;
for (int i=point2[now];i;i=nxt2[i])
if (dis1[v2[i]]<dis1[now]+number[v2[i]])
{
dis1[v2[i]]=dis1[now]+number[v2[i]];
if (!vis[v2[i]]) vis[v2[i]]=1,q.push(v2[i]);
}
}
}
int main()
{
int n,m,i;
scanf("%d%d",&n,&m);
for (i=1;i<=m;i++)
{
scanf("%d%d",&x[i],&y[i]);
addline(x[i],y[i]);
}
for (i=1;i<=n;i++)
if (!dfn[i]) tarjan(i);
for (i=1;i<=m;i++)
if (belong[x[i]]!=belong[y[i]])
{
addline1(belong[x[i]],belong[y[i]]);
addline2(belong[y[i]],belong[x[i]]);
}
spfa();
ans=number[belong[1]];
for (i=1;i<=m;i++)
if (belong[x[i]]!=belong[y[i]])
if (dis[belong[y[i]]] && dis1[belong[x[i]]])
ans=max(ans,dis[belong[y[i]]]+dis1[belong[x[i]]]-number[belong[1]]);
printf("%d",ans);
}