题目:
题解:
喵喵喵刚交上去就发现当ans=0时自己的输出时0\n0“woc!”,然后刷新了一下刚想重交,A了。。。
树上的路径问题可以通过点分治来解决,这个%3=0怎么办呢?如果还是按照刚才模板题的想法—–两点之间的距离是深度和的话,那么我们求出到各个点的深度的时候答案就是(%3=0的点的个数)^2+2*(%3=1的点的个数)*(%3=2的点的个数)
很好理解?
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#define INF 1e9
using namespace std;
const int N=20005;
int tot,nxt[N*2],point[N],v[N*2],c[N*2],f[N],size[N],sum,root,one,two,zer,d[N],ans;
bool vis[N];
int gcd(int a,int b){if (!b) return a;else return gcd(b,a%b);}
void addline(int x,int y,int z)
{
++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y; c[tot]=z;
++tot; nxt[tot]=point[y]; point[y]=tot; v[tot]=x; c[tot]=z;
}
void getroot(int x,int fa)
{
f[x]=0; size[x]=1;
for (int i=point[x];i;i=nxt[i])
if (v[i]!=fa && !vis[v[i]])
{
getroot(v[i],x);
size[x]+=size[v[i]];
f[x]=max(f[x],size[v[i]]);
}
f[x]=max(f[x],sum-f[x]);
if (f[x]<f[root]) root=x;
}
void getdeep(int x,int fa)
{
switch(d[x])
{
case 1:one++;break;
case 2:two++;break;
case 0:zer++;break;
}
for (int i=point[x];i;i=nxt[i])
if (v[i]!=fa && !vis[v[i]])
{
d[v[i]]=(d[x]+c[i])%3;
getdeep(v[i],x);
}
}
int calc(int x,int now)
{
d[x]=now;
one=0; two=0; zer=0;
getdeep(x,0);
return zer*zer+2*one*two;
}
void work(int x)
{
ans+=calc(x,0);
vis[x]=1;
for (int i=point[x];i;i=nxt[i])
if (!vis[v[i]])
{
ans-=calc(v[i],c[i]);
sum=size[v[i]]; root=0; getroot(v[i],x);
work(root);
}
}
int main()
{
int n,i;
scanf("%d",&n);
for (i=1;i<n;i++)
{
int x,y,z;scanf("%d%d%d",&x,&y,&z); z%=3;
addline(x,y,z);
}
sum=n; f[0]=INF; root=0; getroot(1,0);
work(root);
if (ans==0){printf("0/0"); return 0;}
int t=gcd(ans,n*n);
printf("%d/%d",ans/t,n*n/t);
}