[BZOJ4032][HEOI2015]最短不公共子串(dp+后缀自动机)

74 篇文章 0 订阅
13 篇文章 0 订阅

题目:

我是超链接

题解:

后缀自动机只是一个幌子?其实只有第三问才用啦,神题4合1?

总之这个题目记住的原则就是
1、最短不公共长度实际上就是最长匹配中的最小值+1
2、如果某一方是子串,要想方设法让子串依次转移不能跳

First:A子串≠B子串

想想我们以前求最长公共子串的时候吧
f[i][j]表示A的第i位匹配到B的第j位的最长公共长度
f[i][j]=f[i-1][j-1]+1(A[i]==B[j])
这一问的答案实际上就是所有的最长公共子串中最短的+1
不难理解?!

Second:A子串≠B子序列

其实这一问把第一问微微改动就好了
f[i][j]=f[i-1][j-1]+1(A[i]==B[j])
f[i][j]=f[i][j-1](A[i]!=B[j])
这一问的答案依旧是所有的最长公共子串中最短的+1
为什么?因为A要求的是子串,我们的目标是把A的每一位配出去,而B就比较随便了,以前的也可以和A配

Third:A子序列≠B子串

后缀自动机登场
用B串建立SAM
dp[i]表示的是用a的子序列去匹配后缀自动机中的结点,到(SAM)结点i能得到的最短长度
我们枚举A的每一位i和SAM中的每一个结点j
如果有ch[j][i]这个结点,说明能够匹配的上,因此dp[ch[j][i]]=min(dp[j]+1)
要是没有就说明加上这个节点B就接受不了了,取个min值得答案吧

Fourth:A子序列≠B子序列

思路和第三问差不多
但是因为两者都是子序列,所以我们需要预处理一个数组c
c[i][j]表示B序列中第i位之后字符j的最近位置

我们还是利用贪心的思想
dp[i]表示用A子序列匹配到字符串B第i位的最短长度
枚举A的每一位i,倒序枚举B的每一位j
如果有c[j][a[i]]这个结点,说明j之后有一个位置能够与a[i]匹配,因此dp[c[j][a[i]]=min(dp[j]+1)

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#define INF 1e9
using namespace std;
const int N=4005;
int np,p,q,nq,last,cnt,ch[N][30],fa[N],step[N],la,lb,mp[30];
int f[N][N],dp[N],c[N][30];
char a[N],b[N];
void solve1()
{
    int ans=INF;
    for (int i=1;i<=la;i++)
    {
        int mx=0;
        for (int j=1;j<=lb;j++)
        {
          if (a[i]==b[j]) f[i][j]=f[i-1][j-1]+1;
          mx=max(mx,f[i][j]);
        }
        if (mx!=i) ans=min(ans,mx+1);
        //一定要加条件哦,如果=i的话表示全部匹配上了,mx+1就没有意义了 
    }
    if (ans>la || ans>lb) printf("-1\n");else printf("%d\n",ans);  
}
void solve2()
{
    memset(f,0,sizeof(f));
    int ans=INF;
    for (int i=1;i<=la;i++)
    {
        int mx=0;
        for (int j=1;j<=lb;j++)
        {
          if (a[i]==b[j]) f[i][j]=f[i-1][j-1]+1;
          else f[i][j]=f[i][j-1];
          mx=max(mx,f[i][j]);
        }
        if (mx!=i) ans=min(ans,mx+1);
    }
    if (ans>la || ans>lb) printf("-1\n");else printf("%d\n",ans);  
}
void solve3()
{
    memset(dp,0x7f,sizeof(dp));
    dp[1]=0;
    int ans=INF;
    for (int i=1;i<=la;i++)
      for (int j=1;j<=cnt;j++)
        if (!ch[j][a[i]-'a']) ans=min(ans,dp[j]+1);
        else dp[ch[j][a[i]-'a']]=min(dp[ch[j][a[i]-'a']],dp[j]+1);
    if (ans>la || ans>lb) printf("-1\n");else printf("%d\n",ans);  
}
void solve4()
{
    memset(dp,0x7f,sizeof(dp));
    dp[0]=0;
    for (int i=lb;i>=0;i--)
    {
        for (int j=0;j<26;j++)
          if (mp[j]) c[i][j]=mp[j];
        mp[b[i]-'a']=i;
    }
    int ans=INF;
    for (int i=1;i<=la;i++)
      for (int j=lb;j>=0;j--)
        if (!c[j][a[i]-'a']) ans=min(ans,dp[j]+1);
        else dp[c[j][a[i]-'a']]=min(dp[c[j][a[i]-'a']],dp[j]+1);
    if (ans>la || ans>lb) printf("-1\n");else printf("%d\n",ans);   
}
void insert(int c)
{
    p=last; np=last=++cnt;
    step[np]=step[p]+1;
    while (p && !ch[p][c]) ch[p][c]=np,p=fa[p];
    if (!p) {fa[np]=1;return;}
    q=ch[p][c];
    if (step[q]==step[p]+1){fa[np]=q; return;}
    nq=++cnt; step[nq]=step[p]+1;
    memcpy(ch[nq],ch[q],sizeof(ch[q]));
    fa[nq]=fa[q]; fa[q]=fa[np]=nq;
    while (ch[p][c]==q) ch[p][c]=nq,p=fa[p];
}
int main()
{
    scanf("%s",a+1);
    scanf("%s",b+1);
    la=strlen(a+1); lb=strlen(b+1);
    last=cnt=1;
    for (int i=1;i<=lb;i++) insert(b[i]-'a');
    solve1();
    solve2();
    solve3();
    solve4();
}
  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值